
Exam 2
601.428/628 Compilers and Interpreters

November 7, 2022

Complete all questions.

Time: 75 minutes.

I affirm that I have completed this exam without unauthorized assistance
from any person, materials, or device.

Signed:

Print name:

Date:





Question 1. [25 points] The following attributed context-free grammar uses the nonter-
minal symbol E and the terminal symbols + - * / num .

Production Attribute grammar rules
E→ num E.val← valueof(num)
E0→ + E1 E2 E0.val← E1.val + E2.val
E0→ - E1 E2 E0.val← E1.val - E2.val
E0→ * E1 E2 E0.val← E1.val × E2.val
E0→ / E1 E2 E0.val← E1.val / E2.val

Note that subscripts are used to distinguish occurrences of E in a production. Also,
assume that the lexeme of a num terminal symbol is a sequence of digits, and that the
valueof function returns the numeric value of a num symbol based on its lexeme.

(a) Show a derivation for the input * + 2 - 9 3 7 .

Working string Production
E E→



(b) Show a parse tree for the derivation you found in (a). Annotate each node in the
parse tree to show the value of the val attribute, as computed by the attribute rules. For
example, if a node for the E nonterminal was derived from the terminal symbols - 9 3 ,
the value of its val attribute should be 6.



Question 2. [25 points] Consider the following context-free grammar with nonterminal
symbols InsList Ins (start symbol InsList) and terminal symbols add sub reg :

InsList→ Ins
InsList→ InsList Ins

Ins→ add reg reg reg
Ins→ sub reg reg reg

Assume that lexemes for the reg terminal symbol have the form rn, where n is an integer
register number whose value is 1 or greater. The num attribute indicates a register number,
and the rd and wr attributes have values which are sets of integers corresponding to the
registers that are read and written by add and sub instructions. Specifically, a register
is read if it is the second or third operand of an add or sub instruction, and a register is
written if it is the first operand of an add or sub instruction.

As an example, after parsing and computation of attributes, the input

add r1 r2 r3 sub r5 r1 r4

would produce the following attributed parse tree:

On the following page, specify attribute rules for computing the values of the rd and wr
attributes for Ins and InsList nodes. You can assume that a function regnum exists to get
the register number from a reg node. I.e., regnum(reg0)would return the register number
of the symbol reg0. Recall that attribute rules are functional: there are no mutable variables
or state. You may assume that set operations (construction, union, intersection, etc.) are
available, since the values of the rd and wr attributes are sets. Also note that if there are
multiple occurrences of a nonterminal symbol in a production, they are distinguished by
numeric subscripts.



Production Attribute grammar rule(s)

InsList→ Ins InsList.rd←

InsList.wr←

InsList0→ InsList1 Ins InsList0.rd←

InsList0.wr←

Ins→ add reg0 reg1 reg2 Ins.rd←

Ins.wr←

Ins→ sub reg0 reg1 reg2 Ins.rd←

Ins.wr←



Question 3. [25 points] This question refers to the
C program on the right.

(a) Sketch the contents of each symbol table re-
quired to fully represent semantic information
about the declarations in the program. For each
symbol table entry, be sure to indicate the name
(identifier), kind (variable, function, or type), and
type representation. If a symbol table has a parent,
indicate which symbol table is the parent.

Hint: the representation of a struct type could in-
clude a pointer to the symbol table in which its
fields are defined.

struct Point {
int x, y;

}

void move(struct Point *p,
int dx) {

p->x = p->x + dx;
}

int main(void) {
struct Point p;
p.x = 2;
p.y = 3;
move(&p, 10);
return p.x;

}

(b) For references to names in the bodies of the main and move functions, indicate which
symbol table entry the name is associated with by labeling each symbol table entry with
a unique ID, and then labeling each occurrence of a name in the body of a function with
the appropriate ID.



[This page is blank.]



Question 4. [25 points] Consider the following AST node data type:

enum ASTTag { ADD, SUB, MUL, DIV, INT, VAR };

struct ASTNode {
ASTTag tag; // what kind of AST node is it
int ival; // integer value
std::string varname; // variable name
ASTNode *left, *right;
ASTNode(ASTTag tag, int ival=0) : tag(tag), ival(ival),
left(nullptr), right(nullptr) { }

ASTNode(const std::string &varname) : tag(VAR), ival(0),
varname(varname), left(nullptr), right(nullptr) { }

};

Trees constructed using this type represent expressions with operators to perform ad-
dition, subtraction, multiplication, and division, and primary expressions (leaf nodes)
representing literal integers and references to named variables. For example, the follow-
ing code would construct the tree shown on the right, representing the infix expression
a + (b * 3) :

ASTNode *ast = new ASTNode(ADD);
ast->left = new ASTNode("a");
ast->right = new ASTNode(MUL);
ast->right->left = new ASTNode("b");
ast->right->right = new ASTNode(INT, 3);

Assume that an intermediate representation language supports the following instruc-
tions, where R represents a register (r0, r1, etc.):

Instruction Meaning
loadvar R, varname Load value of variable varname into register R
loadint R, intval Load value of integer intval into register R
add Rdst, Rsrc1, Rsrc2 Store sum Rsrc1 +Rsrc2 in Rdst
sub Rdst, Rsrc1, Rsrc2 Store difference Rsrc1 −Rsrc2 in Rdst
mul Rdst, Rsrc1, Rsrc2 Store product Rsrc1 ×Rsrc2 in Rdst
div Rdst, Rsrc1, Rsrc2 Store quotient Rsrc1/Rsrc2 in Rdst

[Question continues on next page]



Here is a possible translation of the example tree:

loadvar r0, a
loadvar r1, b
loadint r2, 3
mul r3, r1, r2
add r4, r0, r3

Complete the codegen function below, so that it generates a sequence of instructions
which carry out the operations represented in the AST passed as the parameter. You may
assume that a nextreg() function is available which returns an int value representing
a “fresh” register in which to store the result of evaluating the expression. Also assume
that codegen will return the register number in which the evaulation result is stored.
The function should print the generated instructions using printf or cout. Hint: use
recursion.

int codegen(ASTNode *ast) {



[You can use this page for scratch work and/or answers.]


