
Midterm Exam 2
601.428/628 Compilers and Interpreters

November 8, 2021

Complete all questions.

Time: 75 minutes.

I affirm that I have completed this exam without unauthorized assistance from any per-
son, materials, or device.

Signed:

Print name:

Date:
































Question 1. [25 points] Consider the following context-free grammar rules, each of which has an
attribute grammar rule for computing an attribute called par. The nonterminal symbols are L B ,
and the terminal symbols are 0 1 . L is the start symbol.

Production Attribute grammar rule
L→ B L.par← B.par
L0→ L1 B if (B.par = 0)

L0.par←L1.par
else

L0.par← (L1.par + 1) mod 2
B→ 0 B.par← 0
B→ 1 B.par← 1

The par attribute is “parity”. An input string with an even number of occurrences of 1 has parity
0, and an input string with an odd number of occurrences of 1 has parity 1. Note that 1 mod 2 = 1
and 2 mod 2 = 0.

Note that the subscripts (e.g., the 0 in L0) are only used to distinguish occurrences of the same
nonterminal symbol in a production.

(a) Show a derivation for the string 1101 .

Working string Production
L L→












































































































































































































(b) Show a parse tree for the derivation you found in (a). Annotate each node in the parse tree to
show the value of the par attribute. For example, if a node for the B nonterminal has a child which
is the terminal symbol 1, its par attribute value should be 1.




























































































































































































































































Question 2. [25 points] Consider the following context-free grammar with nonterminal symbols
E T F and terminal symbols + - * / int var (E is the start symbol):

E→ T
E→ E + T
E→ E - T
T→ F

T→ T * F
T→ T / F
F→ int
F→ var

Assume that int indicates an integer literal specified as a sequence of one or more decimal digits
and var indicates a variable name specified as a sequence of one or more lower case letters (a–z).

For each production, specify attribute grammar rules defining a cv attribute. The cv attribute value
should be the constant value of the expression, or a special undef value if the expression’s value is
not constant. An expression is constant if its value does not depend on any variable references.

As an example, the expression a * 8 + 6 / 2 would have the parse tree shown below, with boxes
showing the expected value of the cv attribute for each node:

Recall that attribute grammar rules must be functional: they compute an attribute value based on
attribute values of child, parent, and/or sibling nodes. There is no global state or mutable state in
an attribute grammar computation. If you need to use one or more additional attributes (besides
cv), you may. You will need to specify rules to fully compute all attributes.

[Specify your attribute grammar rules on the next page.]



Production Attribute grammar rule(s)

E→ T

E0→ E1 + T

E0→ E1 - T

T→ F

T0→ T1 * F

T0→ T1 / F

F→ int

F→ var







































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































Question 3. [25 points] The program on the right uses
the same source language as Assignments 3 and 4.

(a) Sketch the contents of each symbol table required to
fully represent semantic information about the declara-
tions in the program. For each symbol table entry, be
sure to indicate the name (identifier), kind (variable, con-
stant, or type), and type representation. If a symbol table
has a parent, indicate which symbol table is the parent.

PROGRAM q3;
CONST N = 3;
TYPE Point = RECORD

x, y: INTEGER;
END;
VAR a : INTEGER;
VAR p : Point;

BEGIN
a := N;
p.x := a;
p.y := 4;
WRITE p.x;
WRITE p.y;

END.

(b) For each identifier used in the instructions of the program (between BEGIN and END), state
which symbol table entry the identifier refers to. (You can draw arrows from the code to your
symbol tables in part (a), or you could give each symbol table entry a unique ID, and label each
program identifier with the appropriate ID.)






































































































































































































































































































































































































































































































































































































































































































































































































Question 4. [25 points] Consider the following infix expression language:

• The operators are + - * /
• Primary expressions are integer literals and “registers”
• Each register holds an integer value
• Parentheses can be used to control order of evaluation

As an example, the expression (r1 + 3) * 4 would compute the sum of the value in the r1 register
and 3, and then multiply that sum by 4.

The following C++ data types could be used to define AST nodes for this language:

enum ASTTag { ADD, SUB, MUL, DIV, INT, REG };

struct ASTNode {
ASTTag tag; // what kind of AST node is it
int ival; // register number or integer value
ASTNode *left, *right;
ASTNode(ASTTag tag_, int ival_=0)
: tag(tag_), ival(ival_), left(nullptr), right(nullptr)
{ }

};

For example, the AST for the expression shown above could be constructed as follows (the AST
structure is shown on the right):

ASTNode *ast = new ASTNode(MUL);
ast->left = new ASTNode(ADD);
ast->left->left = new ASTNode(REG, 1);
ast->left->right = new ASTNode(INT, 3);
ast->right = new ASTNode(INT, 4);

Let’s assume that a compiler will generate code for a stack-based assembly language with the
following instructions:

Instruction Meaning
pushr R Push value of register R onto stack
pushi N Push integer value N onto stack
add Pop right operand, pop left operand, add, push sum
sub Pop right operand, pop left operand, subtract, push difference
mul Pop right operand, pop left operand, multiply, push product
div Pop right operand, pop left operand, divide, push quotient

[Question continues on next page.]



One possible translation of the example expression is the following code:

pushr 1
pushi 3
add
pushi 4
mul

The idea is that the code generated to evaluate an expression should leave a single value — the
result of evaluating the expression — on the stack.

Complete the following function. It should take a pointer to an AST node representing an expres-
sion, and print (to stdout or cout) a sequence of stack instructions to evaluate the expression.
Hint: use recursion.

void codegen(ASTNode *ast) {























































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































[Extra page for answers and/or scratch work.]


