
Question 1.

Kind of token regular expression
identifier (a|f|n)+
fn keyword fn
integer literal (0|1)+
left parenthesis \(
right parenthesis \)
whitespace ␣+

Question 2.

Question 3.

Question 4.

Question 5 (628).

Note: “accepting” state means the same thing as “final” state.

DFA state 7 represents the reachable NFA state set { 2, 5 }. NFA state 2 is the accepting state
for identifiers, and NFA state set 5 is the accepting state for the fn keyword. If we want to
prioritize recognition of the fn keyword, we simply make this DFA state correspond to matching
an occurrence of fn rather than identifier. In flex, we’d do this because in the lexer specification,
the pattern for fn was earlier than the pattern for identifier. This is how flex resolves ambiguities:
when an ambiguity exists, the earliest pattern “wins”.

All other reachable NFA state sets have an accepting state corresponding to at most 1 token type,
so there are no other ambiguities.

Question 5 (428), 6 (628).

For brevity: i is identifier, n is integer-literal.

So, we want to derive ((fn (i) (i i n)) n) . (Because “a” and “fff” are both identifiers, and
“101” and “110” are both integer literals.)

Working string Production
exp-list exp-list → exp
exp exp → (exp-list)
(exp-list) exp-list → exp exp-list
(exp exp-list) exp → (fn (i) exp)
((fn (i) exp) exp-list) exp → (exp-list)
((fn (i) (exp-list)) exp-list) exp-list → exp exp-list
((fn (i) (exp exp-list)) exp-list) exp → i
((fn (i) (i exp-list)) exp-list) exp-list → exp exp-list
((fn (i) (i exp exp-list)) exp-list) exp → i
((fn (i) (i i exp-list)) exp-list) exp-list → exp
((fn (i) (i i exp)) exp-list) exp → n
((fn (i) (i i n)) exp-list) exp-list → exp
((fn (i) (i i n)) exp) exp → n
((fn (i) (i i n)) n)

Question 6 (428), 7 (628).

Question 7 (428), 8 (628).

For brevity: i is identifier, n is integer-literal.

FIRST(exp) = { i, n, (}

FOLLOW(exp) = { i, n, (,), eof }

Question 8 (428), 9 (628).

Note that building a parse tree isn’t explicitly shown.

parseExp()
t = peek()
if (t is null)

error(“unexpected end of input”)
if (t is identifier)

-- Apply exp → identifier
expect(identifier)

else if (t is integer-literal)
-- Apply exp → integer-literal
expect(integer-literal)

else if (t is “(”)
expect(“(”)
t = peek()
if (t is null)

error(“unexpected end of input”)
else if (t is fn)

-- Apply exp → (fn (identifier) exp)
expect(“fn”)
expect(“(”)
expect(identifier)
expect(“)”)
parseExp()
expect(“)”)

else
-- Apply exp → (exp-list)
parseExpList()
expect(“)”)

Question 10 (628).

No, because the FIRST+ sets of the exp → (exp-list) and exp → (fn (identifier) exp)
productions both contain “(”. Another way to look at this is to recognize that distinguishing these
productions requires two tokens of lookahead.

