
601.628 Compilers and Interpreters Fall 2020, Exam 1 - 628

Exam 1 - 628 Cover Sheet

I affirm that I have completed this exam without unauthorized assistance
from any person, materials, or device. I also affirm that I have completed the
exam according to the restrictions listed in the exam document.

Signed:

Print name:

Date:

Please submit a signed and dated copy of this cover sheet as the first page of
your exam submission.

You will not receive credit for the exam unless your submission includes this
(signed and dated) cover sheet.

601.628 Compilers and Interpreters Fall 2020, Exam 1 - 628

Due: Wednesday, September 30 by 3:00pm EDT

The permitted resources for this exam are:

• The textbook(s)
• Materials posted directly on the course website (e.g., slides)

Do not use any resources other than the ones explicitly noted above.

You may not write program(s) or use automated calculation devices or programs. You will need to
do required calculations by hand. In other words, this is a “pencil and paper” exam, but you can
(and should) type your answers. (Neatly handwritten answers are also fine.)

Do not discuss the exam with anyone else: your answers must be your own answers.

You will submit your answers to Gradescope as “Exam 1 - 628” in PDF format. When you upload
to Gradescope, you will need to select the page of your submitted document corresponding to your
answer to each question. You may use software (word processor, LaTeX, etc.) to prepare your
answers.

Important: Make sure the first page of your submitted document is the signed and dated cover
sheet (which is the first page of this exam document.) You will not receive credit for the exam if
your submission does not include the (signed and dated) cover sheet.

Important: Show your work, and justify your answers. “Bare” answers (without supporting work
or justification) may not receive full credit.

In all questions:

ε (epsilon) means the empty string of symbols.

For questions about finite automata, draw the start state and final state(s) like this:

q0

Start state

q1

Final state
When drawing transitions, make sure that the direction is clearly indicated.

[Questions begin on next page.]

A programming language has 5 kinds of tokens: identifiers, integer literals, left parenthesis, right
parenthesis, and the fn keyword. An identifier is a sequence of 1 or more occurrences of the
characters “a”, “f”, and “n”. An integer literal is a sequence of one or more occurrences of the
characters 0 and 1. Left and right parentheses are the “(” and “)” symbols. The fn keyword has
the lexeme “fn”. Tokens may be separated by occurrences of the space (“␣”) character.

Note that there is ambiguity between identifiers and the fn keyword. In any case where a token
begins with “fn”, and is not followed by another letter (“a”, “f”, or “n”), it is an occurrence of the
fn keyword.

Some examples:

Lexeme Kind of token
a identifier
af identifier
fn fn keyword
fna identifier
1 integer literal
10 integer literal
(left parenthesis
) right parenthesis
␣␣ whitespace (not really a token)

Question 1. [8 points] Specify a regular expression for each of the 5 kinds of tokens in the example
programming language, as well as a regular expression matching whitespace separating tokens. (So,
a total of six regular expressions.) Note that because parentheses are used for grouping in regular
expressions, you should use \(and \) to denote literal left and right parenthesis characters.

Question 2. [8 points] Specify a deterministic finite automaton (DFA) for each of the 5 kinds of
tokens, and also whitespace for separating tokens, in the example programming language. (So, a
total of six finite automata.)

Question 3. [8 points] Construct a single nondeterministic finite automaton (NFA) from the
deterministic finite automata (DFAs) you specified in Question 2. The NFA should have a single
start state, should recognize the union of the languages recognized by the DFAs, and should retain
the structure of the original DFAs. In other words, don’t make any structural changes to the DFAs.
(The slides for Lecture 4 show how to do construct a unified NFA from per-token DFAs.)

Question 4. [16 points] Convert the NFA in Question 3 to a DFA, using the algorithm demon-
strated in class. Important: show the mapping for each reachable set of NFA states to a corre-
sponding DFA state. Make sure that the transitions of the DFA are clearly labeled with a single
input symbol. Do not minimize the DFA.

Question 5. [10 points] Assume that the DFA you constructed in Question 4 is used as the basis
for a lexical analyzer. Briefly explain, in your own words, how the lexical analyzer can determine
that the lexeme “fn” is the fn keyword and not an identifier.

[Questions continue on next page]

The syntax for example programming language discussed earlier is as follows. Nonterminals are in
italic, terminals are boldface. The start symbol is exp-list.

exp-list → exp
exp-list → exp exp-list
exp → integer-literal
exp → identifier
exp → (exp-list)
exp → (fn (identifier) exp)

Question 6. [8 points] Show a derivation for the following input:

((fn (a) (fff a 101)) 110)

Note that following the lexical conventions described previously, “a” and “fff” are identifiers, “fn”
is the fn keyword, and “101” and “110” are integer literals.

Question 7. [8 points] Draw the parse tree corresponding to the derivation in Question 6.

Question 8. [8 points] Show the FIRST and FOLLOW sets for the exp symbol.

Question 9. [16 points] Assume that you will implement a recursive descent parser for this
programming language. Show pseudo-code for the parse function for the exp nonterminal symbol.
You may assume that the lexical analyzer supports peek and next operations, and that there is an
expect function which you can use to consume a specific kind of token.

Question 10. [10 points] Is the above grammar suitable for parsing using LL(1)? Briefly explain
why or why not.

