
Lecture 19: Liveness analysis

David Hovemeyer

November 11, 2024

601.428/628 Compilers and Interpreters

Today

▶ Dataflow analysis
▶ Liveness analysis
▶ InstructionSequence and ControlFlowGraph

Dataflow Analysis

Optimization scopes

From last lecture:

Scope Can analyze/transform Example
Local Single basic blocks Local value numbering
Regional Multiple BBs w/o control joins Super LVN
Global All basic blocks within a function Liveness analysis
Interprocedural All code in the program Function inlining

Liveness analysis (our topic today) is a global analysis

It’s an instance of dataflow analysis, an important general technique for global
analysis

Dataflow Analysis

Goal of dataflow analysis: determine a fact at each location within a function

A dataflow fact is often a set
▶ E.g., set of registers currently containing a live value

A dataflow analysis is executed on a control-flow graph (graph of basic blocks)

The general idea is that the dataflow analysis models
▶ the effect of the basic block on a dataflow fact flowing through the basic

block, taking into account the semantics of the instructions in the block
▶ the effect of control paths coming together, where it is possible for a

location to be reached from multiple predecessor blocks

A dataflow analysis can be forwards or backwards

Liveness Analysis

Liveness analysis

Which storage locations (e.g., virtual registers) contain a “live” value?

“Live” means “is used on some forward path”

Very useful!
▶ If we see a store to a location such that the value in that location is not

live, we can eliminate the store (dead store elimination)
▶ If we’re considering a transformation that eliminates a store to a location,

it’s only legal if the value being stored is dead (correctness requirement
for peephole rewrites)

▶ If any locations other than function parameters contain live values at the
entry to a function, then the function could use an uninitialized value

Memory loads and stores

When a variable’s storage is in memory, there could be one or more pointers
pointing to it (“pointer aliasing”).

That means that when a data value is stored to memory, it could potentially
change the value of any memory location.

Conservative approach (always correct, but least precise):
... = *p; // make no assumptions about what value is loaded

*q = ...; // assume that any memory location might be written to

Because virtual registers aren’t memory and don’t have addresses, we don’t
need to worry about aliasing. Changing the value of one vreg can’t change the
value of any other vreg.

Liveness Analysis

Each dataflow fact is a set of locations (i.e., vregs) containing live values.

LiveOut(n) is the set of locations containing live values at the end of block n

UEVar(n) is the set of locations containing a value that is definitely used in
basic block n (i.e., it appears as a source operand prior to any instruction
storing to it)

VarKill(n) is the set of locations for which an instruction in block n stores a
value to the location

Computation of facts

Initially: for each block n, LiveOut(n) = ∅
Iteratively:

LiveOut(n) = ∪m∈succ(n)(UEVar(m) ∪ (LiveOut(m) ∩ VarKill(m)))

The idea is that we start out by assuming that no vregs contain live values at
the end of each block. However, for each successor m of block n
▶ any vreg that is definitely used in block m prior to being overwritten

(UEVar(m)) is definitely live at the end of n
▶ any vreg that is live at the end of m and not in VarKill(m) is also live at

the end of n

Iterative computation

In general, we want to compute accurate liveness for block n’s successors
before we compute liveness for block n

However, the control flow graph can have cycles (e.g., if the function has a
loop), so this isn’t always possible

General strategy: repeatedly recompute liveness for all blocks until none of the
facts change
▶ The LiveOut sets start out as empty; when they stop growing, we’re done

Algorithm

-- n is number of basic blocks
for (i = 0 to n − 1)

LiveOut(i) ← ∅
changed ← true
while changed

changed ← false
for (i = 0 to n − 1)

old ← LiveOut(i)
recompute LiveOut(i)
if old ̸= LiveOut(i)

changed ← true

Note that the same fixed-point
solution is reached regardless of the
order in which blocks are
recomputed, but some orders are
better for efficiency (more about
this when we fully cover dataflow
analysis.)

Example
// C code
int arrsum(int *a, int n) {

int sum, i;
sum = 0;
for (i = 0; i < n; i = i + 1) {

int elt;
elt = a[i];
if (elt % 2 == 0)

sum = sum + a[i];
}
return sum;

}

Example
// High-level code
// (continues on right)

.globl arrsum
arrsum:

enter $0
mov_q vr10, vr1
mov_l vr11, vr2
mov_l vr12, $0
mov_l vr13, $0
jmp .L1

.L0:
sconv_lq vr17, vr13
mul_q vr18, vr17, $4
add_q vr19, vr10, vr18
mov_l vr20, (vr19)
mod_l vr22, vr20, $2
cmpeq_l vr24, vr22, $0
cjmp_f vr24, .L2

sconv_lq vr25, vr13
mul_q vr26, vr25, $4
add_q vr27, vr10, vr26
mov_l vr29, (vr27)
add_l vr28, vr12, vr29
mov_l vr12, vr28

.L2:
add_l vr31, vr13, $1
mov_l vr13, vr31

.L1:
cmplt_l vr32, vr13, vr11
cjmp_t vr32, .L0
mov_l vr0, vr12
jmp .Larrsum_return

.Larrsum_return:
leave $0
ret

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

InstructionSequence and ControlFlowGraph

InstructionSequence and ControlFlowGraph

InstructionSequence: represents a linear sequence of Instructions
(high-level or low-level)

ControlFlowGraph: a graph of basic blocks
▶ A basic block is just an InstructionSequence with a little bit of

additional information
▶ A branch or function call can only be the last instruction in the basic block
▶ Instructions that are a control flow target must always be the first

instruction in a basic block
▶ Edges of graph represent control flow possibilities

Converting InstructionSequence to ControlFlowGraph

// High-level InstructionSequence to high-level CFG
std::shared_ptr<InstructionSequence> hl_iseq = /* ... */
auto hl_cfg_builder = ::make_highlevel_cfg_builder(hl_iseq);
std::shared_ptr<ControlFlowGraph> hl_cfg = hl_cfg_builder.build();

// Low-level InstructionSequence to low-level CFG
std::shared_ptr<InstructionSequence> ll_iseq = /* ... */
auto ll_cfg_builder = ::make_lowlevel_cfg_builder(ll_iseq);
std::shared_ptr<ControlFlowGraph> ll_cfg = ll_cfg_builder.build();

Converting ControlFlowGraph to InstructionSequence

// Works for either high-level or low-level CFG
std::shared_ptr<ControlFlowGraph> cfg = /* ... */
std::shared_ptr<InstructionSequence> iseq =

cfg->create_instruction_sequence();

Computing liveness information for high-level IR

std::shared_ptr<ControlFlowGraph> hl_cfg = /* ... */;
LiveVregs live_vregs(hl_cfg);
live_vregs.execute();

// live_vregs now has liveness information for virtual registers
// used in basic blocks of the control flow graph

Making use of liveness information

The best way to make use of liveness analysis results (or results from any other
dataflow analysis) is to derive a class from ControlFlowGraphTransform:
▶ Your derived class’s constructor executes the liveness analysis (and

potentially other dataflow analyses) on the ControlFlowGraph
▶ Override the transform_basic_block member function to implement a

local (basic-block scope) code transformation
▶ Within transform_basic_block, you can use the analysis’s

get_fact_before_instruction and/or
get_fact_after_instruction functions to get the dataflow fact at the
location immediately before or after a specified instruction in the basic
block

▶ For liveness analysis, the dataflow fact is a std::bitset containing the
register numbers of live virtual or machine registers

A control flow graph transformation

class MyTransform : public ControlFlowGraphTransform {
private:

LiveVregs m_live_vregs;
// ...other analyses if needed...

public:
MyTransform(std::shared_ptr<ControlFlowGraph> cfg);

virtual std::shared_ptr<InstructionSequence>
transform_basic_block(std::shared_ptr<InstructionSequence> orig_bb);

};

CFG transform: constructor

MyTransform::MyTransform(std::shared_ptr<ControlFlowGraph cfg)
: ControlFlowGraphTransform(cfg)
, m_live_vregs(cfg) {
m_live_vregs.execute(); // compute vreg liveness

}

CFG transform: basic block transform

std::shared_ptr<InstructionSequence>
MyTransform::transform_basic_block(std::shared_ptr<InstructionSequence> orig_bb) {

std::shared_ptr<InstructionSequence> result_iseq(new InstructionSequence());

for (auto i = orig_bb->cbegin(); i != orig_bb->cend(); ++i) {
Instruction *orig_ins = *i;

// ...
// Determine live vregs after instruction executes
LiveVregs::FactType fact

m_live_vregs.get_fact_after_instruction(orig_ins);
// ...

result_iseq->append(/* transformed instruction */);
}

return result_iseq;
}

For liveness on low-level code

LiveMregs computes liveness for machine registers. It works the same way as
LiveVregs, except that the dataflow facts are bitsets of machine registers
containing live values.
▶ The bitset values are the ordinal values of members of the MachineReg

enumeration (i.e., MREG_RAX, etc.)

For further details...

See Assignment 5 for more details

	Dataflow Analysis
	Liveness Analysis
	InstructionSequence and ControlFlowGraph

