
Lecture 18: Code optimization, local value numbering,
copy propagation

David Hovemeyer

November 6, 2024

601.428/628 Compilers and Interpreters

Agenda

▶ Code optimization
▶ Local value numbering
▶ Implementing local value numbering
▶ Copy propagation

Code optimization

Code optimization

Code optimization refers to transformations to the IR intended to make the
generated code “better”
▶ Usually, runtime execution speed is the goal
▶ Smaller code size and/or improved energy efficiency could also be goals

Performing optimization

▶ Optimization techniques: active area of research since the early days of
compilers (1950s!)

▶ General considerations:
▶ Which IR(s) to transform?
▶ AST, high-level linear, low-level linear?

▶ In what order should the transformations be applied?
▶ How many times should transformations be applied?

Possible approach

Note that optimizations could be performed on the AST, but typically focus
on the linear IR (both high- and low-level)

Ordering optimizations, iterating

Individual optimizations within a phase are executed in a sequence, and may
benefit from being repeated.

How an optimization works, preserving correctness

An optimization will generally:
1. Perform an analysis to determine when, where, and how the optimization

can be applied
2. Apply a transformation of the IR when the optimization has determined it

can/should be applied

Optimizations must preserve the semantics of the source program as dictated
by the language specification.

Analysis must be conservative: unless the optimization is 100% confident that
a transformation preserves semantics, it can’t apply the transformation.

Limits of optimization

▶ Optimizations generally don’t result in “optimal” code
▶ Although, modern optimization techniques generally produce code that

is competitive with or superior to hand-written assembly language
▶ The goal is to improve the quality of the generated code
▶ This means that initial code generation generally does not need to be

concerned about the efficiency of the generated code
▶ Early code generation focuses on accurately representing the low-level

operations that the program will carry out
▶ It’s often counterproductive to try to optimize early

Optimization scope

The scope of an optimization describes what regions of the program the
optimization can analyze and transform.

Scope Can analyze/transform Example
Local Single basic blocks Local value numbering
Regional Multiple BBs w/o control joins Super LVN
Global All basic blocks within a function Liveness analysis
Interprocedural All code in the program Function inlining

Larger scopes require more powerful analysis techniques, but have more
potential to improve the code. E.g., a local analysis might miss optimization
opportunities that a global analysis could recognize and exploit.

Local value numbering

Local value numbering

Local value numbering (LVN) is a technique for identifying and eliminating
redundant computations

Basic idea: within a basic block
1. Assign a value number to each value
2. If two locations (e.g., virtual registers) contain the same value number,

then at runtime, they will contain the same value
3. If a computation is repeated (same operation applied to same values), it

is redundant and can be replaced by a reuse of the previous computation
of that value

LVN mechanics

“If a computation is repeated (same operation applied to same values), it is
redundant and can be replaced by a reuse of the previous computation of that
value.”

What this means in practice is that when local value numbering notices that
an available value is being recomputed, it replaces the computation with a
move instruction that copies the original result into the destination of the
recomputation instruction.

So, LVN doesn’t eliminate any instructions: it just identifies redundant
computations and makes them explicit. Subsequent “cleanup” passes will
remove the unnecessary instructions.

LVN example

C code:
x = a * 3 + 4;
y = a * 3 - 5;

Assume: x is vr10, y is
vr11, a is vr12, temporary
vregs start at vr20

High-level IR:
mov_l vr20, $3 /* constant 3 */
mul_l vr21, vr12, vr20 /* a * 3 */
mov_l vr22, $4 /* constant 4 */
add_l vr23, vr21, vr22 /* a * 3 + 4 */
mov_l vr10, vr23 /* assign to x */
mov_l vr24, $3 /* constant 3 */
mul_l vr25, vr12, vr24 /* a * 3 */
mov_l vr26, $5 /* constant 5 */
sub_l vr27, vr25, vr26 /* a * 3 - 5 */
mov_l vr11, vr27 /* assign to y */

LVN example

mov_l vr20, $3 /* constant 3 */
mul_l vr21, vr12, vr20 /* a * 3 */
mov_l vr22, $4 /* constant 4 */
add_l vr23, vr21, vr22 /* a * 3 + 4 */
mov_l vr10, vr23 /* assign to x */
mov_l vr24, $3 /* constant 3 */
mul_l vr25, vr12, vr24 /* a * 3 */
mov_l vr26, $5 /* constant 5 */
sub_l vr27, vr25, vr26 /* a * 3 - 5 */
mov_l vr11, vr27 /* assign to y */

x is vr10
y is vr11
a is vr12
Temps start at vr20

Goal: assign a value number to each operand.

LVN example

mov_l vr20, $3 /* constant 3 */
mul_l vr21, vr12, vr20 /* a * 3 */
mov_l vr22, $4 /* constant 4 */
add_l vr23, vr21, vr22 /* a * 3 + 4 */
mov_l vr10, vr23 /* assign to x */
mov_l vr24, $3 /* constant 3 */
mul_l vr25, vr12, vr24 /* a * 3 */
mov_l vr26, $5 /* constant 5 */
sub_l vr27, vr25, vr26 /* a * 3 - 5 */
mov_l vr11, vr27 /* assign to y */

0 0 x is vr10
y is vr11
a is vr12
Temps start at vr20

Constant value 3 is value number 0 (available in vr20).

LVN example

mov_l vr20, $3 /* constant 3 */
mul_l vr21, vr12, vr20 /* a * 3 */
mov_l vr22, $4 /* constant 4 */
add_l vr23, vr21, vr22 /* a * 3 + 4 */
mov_l vr10, vr23 /* assign to x */
mov_l vr24, $3 /* constant 3 */
mul_l vr25, vr12, vr24 /* a * 3 */
mov_l vr26, $5 /* constant 5 */
sub_l vr27, vr25, vr26 /* a * 3 - 5 */
mov_l vr11, vr27 /* assign to y */

0 0
02 1

x is vr10
y is vr11
a is vr12
Temps start at vr20

a is value number 1, a * 3 is value number 2 (available in vr21).

LVN example

mov_l vr20, $3 /* constant 3 */
mul_l vr21, vr12, vr20 /* a * 3 */
mov_l vr22, $4 /* constant 4 */
add_l vr23, vr21, vr22 /* a * 3 + 4 */
mov_l vr10, vr23 /* assign to x */
mov_l vr24, $3 /* constant 3 */
mul_l vr25, vr12, vr24 /* a * 3 */
mov_l vr26, $5 /* constant 5 */
sub_l vr27, vr25, vr26 /* a * 3 - 5 */
mov_l vr11, vr27 /* assign to y */

0 0
0

3 3
2 1

x is vr10
y is vr11
a is vr12
Temps start at vr20

Constant value 4 is value number 3 (available in vr20).

LVN example

mov_l vr20, $3 /* constant 3 */
mul_l vr21, vr12, vr20 /* a * 3 */
mov_l vr22, $4 /* constant 4 */
add_l vr23, vr21, vr22 /* a * 3 + 4 */
mov_l vr10, vr23 /* assign to x */
mov_l vr24, $3 /* constant 3 */
mul_l vr25, vr12, vr24 /* a * 3 */
mov_l vr26, $5 /* constant 5 */
sub_l vr27, vr25, vr26 /* a * 3 - 5 */
mov_l vr11, vr27 /* assign to y */

0 0
0

4
3

3
3

2

2

1
x is vr10
y is vr11
a is vr12
Temps start at vr20

a * 3 + 4 is value number 4 (available in vr23).

LVN example

mov_l vr20, $3 /* constant 3 */
mul_l vr21, vr12, vr20 /* a * 3 */
mov_l vr22, $4 /* constant 4 */
add_l vr23, vr21, vr22 /* a * 3 + 4 */
mov_l vr10, vr23 /* assign to x */
mov_l vr24, $3 /* constant 3 */
mul_l vr25, vr12, vr24 /* a * 3 */
mov_l vr26, $5 /* constant 5 */
sub_l vr27, vr25, vr26 /* a * 3 - 5 */
mov_l vr11, vr27 /* assign to y */

0 0
0

4
4 4

3
3

3
2

2

1
x is vr10
y is vr11
a is vr12
Temps start at vr20

a * 3 + 4 is assigned to x.

LVN example

mov_l vr20, $3 /* constant 3 */
mul_l vr21, vr12, vr20 /* a * 3 */
mov_l vr22, $4 /* constant 4 */
add_l vr23, vr21, vr22 /* a * 3 + 4 */
mov_l vr10, vr23 /* assign to x */
mov_l vr24, $3 /* constant 3 */
mul_l vr25, vr12, vr24 /* a * 3 */
mov_l vr26, $5 /* constant 5 */
sub_l vr27, vr25, vr26 /* a * 3 - 5 */
mov_l vr11, vr27 /* assign to y */

0

0 0

0
0

4
4 4

3
3

3
2

2

1
x is vr10
y is vr11
a is vr12
Temps start at vr20

Constant value 3 is value number 0 (available already in vr20, now also
available in vr24).

LVN example

mov_l vr20, $3 /* constant 3 */
mul_l vr21, vr12, vr20 /* a * 3 */
mov_l vr22, $4 /* constant 4 */
add_l vr23, vr21, vr22 /* a * 3 + 4 */
mov_l vr10, vr23 /* assign to x */
mov_l vr24, vr20 /* constant 3 */
mul_l vr25, vr12, vr24 /* a * 3 */
mov_l vr26, $5 /* constant 5 */
sub_l vr27, vr25, vr26 /* a * 3 - 5 */
mov_l vr11, vr27 /* assign to y */

0

0 0

0
0

4
4 4

3
3

3
2

2

1

*

x is vr10
y is vr11
a is vr12
Temps start at vr20

Make the redundancy explicit by copying vr20 to vr24.

LVN example

mov_l vr20, $3 /* constant 3 */
mul_l vr21, vr12, vr20 /* a * 3 */
mov_l vr22, $4 /* constant 4 */
add_l vr23, vr21, vr22 /* a * 3 + 4 */
mov_l vr10, vr23 /* assign to x */
mov_l vr24, vr20 /* constant 3 */
mul_l vr25, vr12, vr24 /* a * 3 */
mov_l vr26, $5 /* constant 5 */
sub_l vr27, vr25, vr26 /* a * 3 - 5 */
mov_l vr11, vr27 /* assign to y */

0

0 0

0
0

4
4 4

3
3

3
2

2

1

02 1

x is vr10
y is vr11
a is vr12
Temps start at vr20

Product of value number 1 (a) and value number 0 (constant 3) is already
known to be value number 2 (available in vr21, now also in vr25).

LVN example

mov_l vr20, $3 /* constant 3 */
mul_l vr21, vr12, vr20 /* a * 3 */
mov_l vr22, $4 /* constant 4 */
add_l vr23, vr21, vr22 /* a * 3 + 4 */
mov_l vr10, vr23 /* assign to x */
mov_l vr24, vr20 /* constant 3 */

/* a * 3 */
mov_l vr26, $5
mov_l vr25, vr21

/* constant 5 */
sub_l vr27, vr25, vr26 /* a * 3 - 5 */
mov_l vr11, vr27 /* assign to y */

0

0 0

0
0

4
4 4

3
3

3
2

2

1

2 2*

x is vr10
y is vr11
a is vr12
Temps start at vr20

Make the redundancy explicit by copying vr21 to vr25.

LVN example

mov_l vr20, $3 /* constant 3 */
mul_l vr21, vr12, vr20 /* a * 3 */
mov_l vr22, $4 /* constant 4 */
add_l vr23, vr21, vr22 /* a * 3 + 4 */
mov_l vr10, vr23 /* assign to x */
mov_l vr24, vr20 /* constant 3 */

/* a * 3 */
mov_l vr26, $5
mov_l vr25, vr21

/* constant 5 */
sub_l vr27, vr25, vr26 /* a * 3 - 5 */
mov_l vr11, vr27 /* assign to y */

0

0 0

0
0

4
4 4

3
3

3
2

2

1

2 2
5 5

x is vr10
y is vr11
a is vr12
Temps start at vr20

Constant value 5 is value number 5 (now available in vr26).

LVN example

mov_l vr20, $3 /* constant 3 */
mul_l vr21, vr12, vr20 /* a * 3 */
mov_l vr22, $4 /* constant 4 */
add_l vr23, vr21, vr22 /* a * 3 + 4 */
mov_l vr10, vr23 /* assign to x */
mov_l vr24, vr20 /* constant 3 */

/* a * 3 */
mov_l vr26, $5
mov_l vr25, vr21

/* constant 5 */
sub_l vr27, vr25, vr26 /* a * 3 - 5 */
mov_l vr11, vr27 /* assign to y */

0

0 0

0
0

4
4 4

3
3

3
2

2

1

2

2

2
5

56
5

x is vr10
y is vr11
a is vr12
Temps start at vr20

a * 3 - 5 is value number 6 (now available in vr27).

LVN example

mov_l vr20, $3 /* constant 3 */
mul_l vr21, vr12, vr20 /* a * 3 */
mov_l vr22, $4 /* constant 4 */
add_l vr23, vr21, vr22 /* a * 3 + 4 */
mov_l vr10, vr23 /* assign to x */
mov_l vr24, vr20 /* constant 3 */

/* a * 3 */
mov_l vr26, $5
mov_l vr25, vr21

/* constant 5 */
sub_l vr27, vr25, vr26 /* a * 3 - 5 */
mov_l vr11, vr27 /* assign to y */

0

0 0

0
0

4
4 4

3
3

3
2

2

1

2

2

2
5

56
6 6

5

x is vr10
y is vr11
a is vr12
Temps start at vr20

Assign a * 3 - 5 to y.

What did that accomplish?

In the two instructions where a previously-computed value was computed
again, we changed the instruction to be a copy from the vreg holding the
previously-computed value to the destination.

Next step is to perform copy propagation: within the basic block, if vreg A is
copied to vreg B, replace uses of B with A.

If we eliminate all references to B, the instruction assigning to B becomes a
dead store, and we can remove it.

LVN example (copy propagation, dead store elimination)

mov_l vr20, $3 /* constant 3 */
mul_l vr21, vr12, vr20 /* a * 3 */
mov_l vr22, $4 /* constant 4 */
add_l vr23, vr21, vr22 /* a * 3 + 4 */
mov_l vr10, vr23 /* assign to x */
mov_l vr24, vr20 /* constant 3 */

/* a * 3 */
mov_l vr26, $5
mov_l vr25, vr21

/* constant 5 */
sub_l vr27, vr25, vr26 /* a * 3 - 5 */
mov_l vr11, vr27 /* assign to y */

x is vr10
y is vr11
a is vr12
Temps start at vr20

Code after local value numbering; recomputations have been replaced by a
mov to copy the originally-computed value.

LVN example (copy propagation, dead store elimination)

mov_l vr20, $3 /* constant 3 */
mul_l vr21, vr12, vr20 /* a * 3 */
mov_l vr22, $4 /* constant 4 */
add_l vr23, vr21, vr22 /* a * 3 + 4 */
mov_l vr10, vr23 /* assign to x */
mov_l vr24, vr20 /* constant 3 */

/* a * 3 */
mov_l vr26, $5
mov_l vr25, vr21

/* constant 5 */
sub_l vr27, vr25, vr26 /* a * 3 - 5 */
mov_l vr11, vr27 /* assign to y */

*

x is vr10
y is vr11
a is vr12
Temps start at vr20

Copy propagation: vr24 is a copy of vr20.

LVN example (copy propagation, dead store elimination)

mov_l vr20, $3 /* constant 3 */
mul_l vr21, vr12, vr20 /* a * 3 */
mov_l vr22, $4 /* constant 4 */
add_l vr23, vr21, vr22 /* a * 3 + 4 */
mov_l vr10, vr23 /* assign to x */
mov_l vr24, vr20 /* constant 3 */

/* a * 3 */
mov_l vr26, $5
mov_l vr25, vr21

/* constant 5 */
sub_l vr27, vr25, vr26 /* a * 3 - 5 */
mov_l vr11, vr27 /* assign to y */

*

x is vr10
y is vr11
a is vr12
Temps start at vr20

Copy propagation: vr25 is a copy of vr21.

LVN example (copy propagation, dead store elimination)

mov_l vr20, $3 /* constant 3 */
mul_l vr21, vr12, vr20 /* a * 3 */
mov_l vr22, $4 /* constant 4 */
add_l vr23, vr21, vr22 /* a * 3 + 4 */
mov_l vr10, vr23 /* assign to x */
mov_l vr24, vr20 /* constant 3 */

/* a * 3 */
mov_l vr26, $5
mov_l vr25, vr21

/* constant 5 */
sub_l vr27, vr25, vr26 /* a * 3 - 5 */
mov_l vr11, vr27 /* assign to y */*

x is vr10
y is vr11
a is vr12
Temps start at vr20

Copy propagation: vr25 is used as a source operation by sub_l.

LVN example (copy propagation, dead store elimination)

mov_l vr20, $3 /* constant 3 */
mul_l vr21, vr12, vr20 /* a * 3 */
mov_l vr22, $4 /* constant 4 */
add_l vr23, vr21, vr22 /* a * 3 + 4 */
mov_l vr10, vr23 /* assign to x */
mov_l vr24, vr20 /* constant 3 */

/* a * 3 */
mov_l vr26, $5
mov_l vr25, vr21

/* constant 5 */
sub_l vr27, vr21, vr26 /* a * 3 - 5 */
mov_l vr11, vr27 /* assign to y */*

x is vr10
y is vr11
a is vr12
Temps start at vr20

Copy propagation: replace vr25 with vr21.

LVN example (copy propagation, dead store elimination)

mov_l vr20, $3 /* constant 3 */
mul_l vr21, vr12, vr20 /* a * 3 */
mov_l vr22, $4 /* constant 4 */
add_l vr23, vr21, vr22 /* a * 3 + 4 */
mov_l vr10, vr23 /* assign to x */
mov_l vr24, vr20 /* constant 3 */

/* a * 3 */
mov_l vr26, $5
mov_l vr25, vr21

/* constant 5 */
sub_l vr27, vr21, vr26 /* a * 3 - 5 */
mov_l vr11, vr27 /* assign to y */

x is vr10
y is vr11
a is vr12
Temps start at vr20

Dead store elimination: there are no longer any uses of vr24 or vr25, so the
instructions which assign to them can be removed.

Limits of local value numbering

Because it’s a local analysis (scope is only one basic block), LVN can’t exploit
redundant computations that are in different basic blocks, even if the result of
a computation is guaranteed to be available.

Superlocal value numbering

Superlocal value numbering extends LVN to propagate values known in a
predecessor block to a successor block, but only if the successor has no other
predecessors.

Superlocal value numbering example
p = a + b
...
q = a + b

if (cond1) {
if (cond2)

r = a + b
else

s = a + b

t = a + b
}

u = a + b

Superlocal value numbering example
p = a + b
...
q = a + b

if (cond1) {
if (cond2)

r = a + b
else

s = a + b

t = a + b
}

u = a + b Redundancy fixable using LVN

Superlocal value numbering example
p = a + b
...
q = a + b

if (cond1) {
if (cond2)

r = a + b
else

s = a + b

t = a + b
}

u = a + b Additional redundancies fixable using super LVN

Superlocal value numbering example
p = a + b
...
q = a + b

if (cond1) {
if (cond2)

r = a + b
else

s = a + b

t = a + b
}

u = a + b Redundancies requiring global techniques to fix

Implementing super LVN

To implement super LVN, the data structure keeping track of value numbers
can simply be copied from the end of the predecessor block to the beginning
of the (single) successor block.

Note that the register allocator will need to be involved: if a
previously-computed value is in a register, and we want to reuse it in a
different basic block, the register allocator will need to know (so it doesn’t try
to allocate that register to a different value.)

Implementing local value numbering

Implementing local value numbering

This section describes an approach to implementing LVN.

This is not the only possible approach.

LVN is a local analysis, so the analysis and transformation is applied separately
to each basic block in the function.

Key concept: an LVN key represents a computed value.

LVN key

A LVN key identifies a computed value:
▶ Value numbers of operand(s)
▶ For commutative operations, canonicalize the order (e.g., left hand

operation must have lower value number)
▶ Operation being performed (add, subtract, etc.)
▶ Whether the computed value is a compile-time constant

Data to keep track of

As the analysis progresses, keep track of:
▶ map of constant values to their value numbers (just for constant values)
▶ map of value numbers to constant values (just for constant values)
▶ map of virtual registers to value numbers (i.e., find out what value

number is in each virtual register)
▶ map of value numbers to sets of virtual registers known to contain the

value number
▶ map of LVNKey to value number
▶ next value number to be assigned

Modeling instructions

▶ see an unknown vreg: assign a new value number
▶ see a load from memory, or a read: assign a new value number
▶ computed value: find value number of value being computed

1. find value numbers of operands
2. create an LVNKey from opcode and operand value numbers
▶ canonicalize order of operands if operation is commutative
▶ determine if value is a compile-time constant

3. check map of LVNKey to value number; if not found, assign new value
number (and update the map)

For each def (assignment to vreg), goal is to know the value number of value
being assigned to the vreg

Effect of defs

If a def assigns a value number to a vreg that is different than the one it
previously contained, then we must update all data structures appropriately.

Including: removing it from the set of vregs known to contain its previous
value number.

Important! The value in a vreg should only be overwritten if it is being used
as storage for a local variable. Temporary vregs allocated in expression
evaluation shouldn’t be overwritten, meaning values computed in expression
evaluation should always be available.

Transformation

To the extent possible, every def of the form
vreg ← some value

is replaced with
vreg ← known value

“known value” could be a compile-time constant (best case), or a vreg known
to store the same value as some value

What LVN achieves

Value numbering doesn’t eliminate any instructions: it just makes
redundancies more explicit.

Subsequent copy propagation and elimination of stores to dead vregs passes
will remove instructions that are no longer needed.

Copy propagation

Result of LVN, copy propagation

LVN will generate instructions of the form
vregn ← vregm

where vregm is a virtual register containing a previously computed value

Subsequent uses of vregn can be replaced with vregm. This transformation is
copy propagation.

Copy propagation example

Consider the code:

/* original code */
add_l vr2, vr0, vr1
mov_l vr4, vr0
add_l vr5, vr4, vr3

Copy propagation example

After copy propagation:

/* original code */ /* transformed code */
add_l vr2, vr0, vr1 add_l vr2, vr0, vr1
mov_l vr4, vr0 mov_l vr4, vr0
add_l vr5, vr4, vr3 add_l vr5, vr0, vr3

If vr4 became dead at the point of the assignment to it, the mov_l
instruction can be eliminated
▶ This is called dead store elimination

Local value numbering example

/* Note: vr10-vr14 are used for local vars */
localaddr vr16, $1600
sconv_lq vr17, vr11
mul_q vr18, vr17, $80
add_q vr19, vr16, vr18
sconv_lq vr20, vr12
mul_q vr21, vr20, $8
add_q vr22, vr19, vr21
mov_q vr23, (vr22)
mov_q vr15, vr23
localaddr vr24, $800
sconv_lq vr25, vr13
mul_q vr26, vr25, $80
add_q vr27, vr24, vr26
sconv_lq vr28, vr12
mul_q vr29, vr28, $8
add_q vr30, vr27, vr29
mov_q vr32, (vr30)
mul_q vr31, vr14, vr32
add_q vr33, vr15, vr31
mov_q vr15, vr33

/* Note: vr10-vr14 are used for local vars */
localaddr vr16, $1600
sconv_lq vr17, vr11
mul_q vr18, vr17, $80
add_q vr19, vr16, vr18
sconv_lq vr20, vr12
mul_q vr21, vr20, $8
add_q vr22, vr19, vr21
mov_q vr23, (vr22)
mov_q vr15, vr23
localaddr vr24, $800
sconv_lq vr25, vr13
mul_q vr26, vr25, $80
add_q vr27, vr24, vr26
sconv_lq vr28, vr12
mul_q vr29, vr28, $8
add_q vr30, vr27, vr29
mov_q vr32, (vr30)
mul_q vr31, vr14, vr32
add_q vr33, vr15, vr31
mov_q vr15, vr33

	Code optimization
	Local value numbering
	Implementing local value numbering
	Copy propagation
	Local value numbering example

