
Lecture 17: Pointers, arrays, and structs

David Hovemeyer

October 28, 2024

601.428/628 Compilers and Interpreters

Today

▶ Functions and function calls
▶ Pointers and lvalues
▶ Arrays
▶ Structs

Functions and function calls

Function calls

Generating code for functions and function calls is reasonably straightforward.

Main issue: the argument registers need to be available to use to pass
argument values to the called function.
▶ And, a function containing function calls will need to retrieve its own

arguments from the argument registers

Note that on some architectures (e.g., 32-bit x86), arguments are passed on
the stack (and are accessed in memory via the stack pointer.)

Also, even on architectures where argument registers are used, there will be a
fixed number of them, and “excess” arguments will typically be passed on the
stack.

Argument registers

In the high-level IR, virtual registers vr1 through vr9 are used to pass
argument values to functions.

In the low-level (x86-64) IR, the argument registers %rdi, %rsi, %rdx, %rcx,
%r8, and %r9 are used to pass argument values to functions. (You won’t be
required to support functions with more than 6 parameters.)

Storage for function parameters

Function parameters are variables which should be allocated storage in the
same way as any other local variable.

At the beginning of the code generated for a function, the high-level code
generator should emit a series of mov instructions to copy the value of each
argument register into its corresponding parameter variable.

This ensures that the parameter values can be accessed in the body of the
function, even though the argument registers might need to be used to pass
arguments to called functions.

Moving argument values to parameter variables (example)

/* C code */
int sum_arr(int *arr, int n) {

int i, sum;
sum = 0;
for (i = 0; i < n; i = i + 1)

sum = sum + arr[i];
return sum;

}

/* high-level IR */
sum_arr:

enter $0
mov_q vr10, vr1
mov_l vr11, vr2
mov_l vr14, $0
mov_l vr13, vr14
mov_l vr15, $0
mov_l vr12, vr15
...etc...

Note: arr is vr10, n is vr11

Calling a function

Calling a function means
1. Evaluating argument expressions and moving their values to the argument

registers (vr1, vr2, etc.)
2. Emitting a call instruction

Calling a function (example)

/* C code */
int add(int a, int b);

int main(void) {
int sum;
sum = add(3, 4);
return sum;

}

/* high-level IR */
main:

enter $0
mov_l vr11, $3
mov_l vr1, vr11
mov_l vr12, $4
mov_l vr2, vr12
call add
...etc...

Returning a value

In the high-level IR, the computed return value should be assigned to vr0 (the
return value register).

Since a C function could have multiple return statements, including “early”
returns, this should be followed by jumping to a label marking the function
epilogue and ret instruction.

Returning a value (example)

/* C code */
int add(int a, int b);

int main(void) {
int sum;
sum = add(3, 4);
return sum;

}

/* high-level IR */
main:

enter $0
...compute arg values...
call add
mov_l vr13, vr0
mov_l vr10, vr13
mov_l vr0, vr10
jmp .Lmain_return

.Lmain_return:
leave $0
ret

Capture return value of add
function, store it in vr0 to
return from main

Returning a value (example)

/* C code */
int add(int a, int b);

int main(void) {
int sum;
sum = add(3, 4);
return sum;

}

/* high-level IR */
main:

enter $0
...compute arg values...
call add
mov_l vr13, vr0
mov_l vr10, vr13
mov_l vr0, vr10
jmp .Lmain_return

.Lmain_return:
leave $0
ret

Jump to function epilogue

Function calls in low-level code

Because all variables have storage locations independent from argument
registers, the low-level argument registers (%rdi, %rsi, etc.) are always
available for use by the low-level code generator.1

The return value register %rax is also always available.

So:
▶ The high-level argument registers (vr1 through vr6) are synonymous

with the low-level argument registers (%rdi, %rsi, etc.)
▶ The high-level return value register vr0 is synonymous with the lowel-level

return value register %rax

1The register allocator will also be involved in their use, more about that soon.

Function call in low-level code (example)
/* C code */
int add(int a, int b);

int main(void) {
int sum;
sum = add(3, 4);
return sum;

}

/* low-level IR */
main:

pushq %rbp /* enter $0 */
movq %rsp, %rbp
subq $32, %rsp
movl $3, -24(%rbp) /* mov_l vr11, $3 */
movl -24(%rbp), %edi /* mov_l vr1, vr11 */
movl $4, -16(%rbp) /* mov_l vr12, $4 */
movl -16(%rbp), %esi /* mov_l vr2, vr12 */
call add /* call add */
movl %eax, -8(%rbp) /* mov_l vr13, vr0 */
movl -8(%rbp), %r10d /* mov_l vr10, vr13 */
movl %r10d, -32(%rbp)
movl -32(%rbp), %eax /* mov_l vr0, vr10 */
jmp .Lmain_return /* jmp .Lmain_return */

.Lmain_return:
addq $32, %rsp /* leave $0 */
popq %rbp
ret /* ret */

Compute arguments,
place in argument
registers, call function,
store result in sum

Function return in low-level code (example)
/* C code */
int add(int a, int b);

int main(void) {
int sum;
sum = add(3, 4);
return sum;

}

/* low-level IR */
main:

pushq %rbp /* enter $0 */
movq %rsp, %rbp
subq $32, %rsp
movl $3, -24(%rbp) /* mov_l vr11, $3 */
movl -24(%rbp), %edi /* mov_l vr1, vr11 */
movl $4, -16(%rbp) /* mov_l vr12, $4 */
movl -16(%rbp), %esi /* mov_l vr2, vr12 */
call add /* call add */
movl %eax, -8(%rbp) /* mov_l vr13, vr0 */
movl -8(%rbp), %r10d /* mov_l vr10, vr13 */
movl %r10d, -32(%rbp)
movl -32(%rbp), %eax /* mov_l vr0, vr10 */
jmp .Lmain_return /* jmp .Lmain_return */

.Lmain_return:
addq $32, %rsp /* leave $0 */
popq %rbp
ret /* ret */

Move sum to return
value register, jump to
function epilogue

Function calls and register allocation

Looking ahead: register allocation is an optimization technique in which
values computed and used in a function are stored in CPU registers.

The more CPU registers available to the register allocator, the more effective
it can be.

For temporary values (e.g., values of evaluated subexpressions), caller-saved
registers are usually appropriate.

It is beneficial to make argument registers (which are caller-saved) available to
the register allocator. However, this needs to be done in a way that doesn’t
interfere with their use to pass arguments to called functions.

Local register allocation and function calls

In local register allocation, register allocation decisions are made at the level
of individual basic blocks. This is relatively straightforward to do. (Contrast:
global register allocation, which can be more effective overall, but which
requires more powerful analysis to do safely.)

Idea: the local register allocator can use the argument registers to store
temporary values as long as they won’t be needed for a function call (if the
basic block contains one.)

More about this later when we cover register allocation.

Pointers and lvalues

Pointers and lvalues

A pointer value represents the memory address of an lvalue’s storage location.

A variable is an lvalue. So are fields of structs and array elements.

For variables requiring storage in memory, the storage allocator should assign
it a storage offset in the stack frame. General requirements:
▶ variables with overlapping lifetimes require non-overlapping storage
▶ storage offsets must reflect alignment requirements of the variable’s data

type

Codegen for lvalues

Important idea: if the generated code needs to refer to an lvalue, the code
generator must be able to place the address of its storage location in a
register. (For the high-level code generator, it must place the lvalue’s storage
address in a virtual register.)

So, lvalues are ultimately about computing the address a storage location:
▶ Easy case: for a variable reference, the code generator knows its offset in

the local storage area.2 Emit a localaddr instruction to load the lvalue’s
storage address into a temporary virtual register.

▶ Array subscript: compute the address of an array element by adding a
computed offset to a base address.

▶ Field reference: compute the address of a struct member by adding its
offset to a base address pointing to the beginning of the struct.

2The offset should be in the variable’s symbol table entry.

Representing lvalues during high-level codegen

Recall that the high-level code generator, when generating code for an
expression, will put an Operand in the AST node representing the expression
to indicate how to access the result of the expression.
▶ E.g., if vr15 is where the result of the expression was placed, then the

Operand representing vr15 is placed in the AST node

Idea: the Operand for an expression yielding an lvalue is a memory reference
operand of the form (vrN), where N is the register number of the virtual
register containing the address of the lvalue’s storage location.
▶ For “scalar” (integral value or pointer) lvalues, the operand is the correct

way to refer to the lvalue
▶ For arrays and struct instances, the operand can be “unpacked” to get the

virtual register containing the base address

Address-of, pointer dereference

Using the representation (vrN) for lvalues has a nice benefit:
▶ The C address-of operator (&) means transforming (vrN) into vrN
▶ The C pointer dereference operator (*) means transforming vrN into

(vrN)

Pointer operations (example)
/* C code */
int read_i32(void);
void print_i32(int x);

int main(void) {
int a, b, *p;
a = read_i32();
b = read_i32();

if (a < b)
p = &a;

else
p = &b;

*p = 42;

print_i32(a);
print_i32(b);
return 0;

}

/* high-level IR */

Note: p is vr10, a’s storage is at offset 0,
b’s storage is at offset 4

Pointer operations (example)
/* C code */
int read_i32(void);
void print_i32(int x);

int main(void) {
int a, b, *p;
a = read_i32();
b = read_i32();

if (a < b)
p = &a;

else
p = &b;

*p = 42;

print_i32(a);
print_i32(b);
return 0;

}

/* high-level IR */
call read_i32
mov_l vr11, vr0
localaddr vr12, $0
mov_l (vr12), vr11

Note: p is vr10, a’s storage is at offset 0,
b’s storage is at offset 4

Store result of calling read_i32() in a

Pointer operations (example)
/* C code */
int read_i32(void);
void print_i32(int x);

int main(void) {
int a, b, *p;
a = read_i32();
b = read_i32();

if (a < b)
p = &a;

else
p = &b;

*p = 42;

print_i32(a);
print_i32(b);
return 0;

}

/* high-level IR */
localaddr vr15, $0
localaddr vr16, $4
mov_l vr18, (vr15)
mov_l vr19, (vr16)
cmplt_l vr17, vr18, vr19

Note: p is vr10, a’s storage is at offset 0,
b’s storage is at offset 4

Determine whether the value in a is less
than the value in b

Pointer operations (example)
/* C code */
int read_i32(void);
void print_i32(int x);

int main(void) {
int a, b, *p;
a = read_i32();
b = read_i32();

if (a < b)
p = &a;

else
p = &b;

*p = 42;

print_i32(a);
print_i32(b);
return 0;

}

/* high-level IR */
localaddr vr20, $0
mov_q vr10, vr20

Note: p is vr10, a’s storage is at offset 0,
b’s storage is at offset 4

Store the address of a in p

Pointer operations (example)
/* C code */
int read_i32(void);
void print_i32(int x);

int main(void) {
int a, b, *p;
a = read_i32();
b = read_i32();

if (a < b)
p = &a;

else
p = &b;

*p = 42;

print_i32(a);
print_i32(b);
return 0;

}

/* high-level IR */
mov_l vr22, $42
mov_l (vr10), vr22

Note: p is vr10, a’s storage is at offset 0,
b’s storage is at offset 4

Store the value 42 in the variable that p
points to

Arrays

Arrays

C defines the array subscript operator a[i] as being equivalent to
*(a + i) .

So, accessing an array element is based on pointer arithmetic.

When used in an expression, an array “decays” to a pointer to its first element.

If a points to the first element of an array, a + i computes a pointer to
the element at index i of that array.
▶ I.e., a + i is &a[i]

Pointer arithmetic

To evaluate the result of a pointer arithmetic expression a + i , the
generated code should
▶ Compute the offset of the element i positions from the one a points to;

this is i multiplied by the element size (i.e., the size of the data type that
the pointer a points to)

▶ Add the offset to a; the sum is the result

Pointer arithmetic (example)
/* C code */
int read_i32(void);

int main(void) {
int arr[10], i, *p;
i = read_i32();
p = arr + i;
*p = 42;
return *p;

}

/* high-level IR */
main:

enter $40
call read_i32
mov_l vr12, vr0
mov_l vr10, vr12
localaddr vr13, $0
sconv_lq vr15, vr10
mul_q vr16, vr15, $4
add_q vr14, vr13, vr16
mov_q vr11, vr14
mov_l vr17, $42
mov_l (vr11), vr17
mov_l vr0, (vr11)
jmp .Lmain_return

.Lmain_return:
leave $40
ret

Note: arr is at offset 0,
i is vr10, p is vr11

Pointer arithmetic (example)
/* C code */
int read_i32(void);

int main(void) {
int arr[10], i, *p;
i = read_i32();
p = arr + i;
*p = 42;
return *p;

}

/* high-level IR */
main:

enter $40
call read_i32
mov_l vr12, vr0
mov_l vr10, vr12
localaddr vr13, $0
sconv_lq vr15, vr10
mul_q vr16, vr15, $4
add_q vr14, vr13, vr16
mov_q vr11, vr14
mov_l vr17, $42
mov_l (vr11), vr17
mov_l vr0, (vr11)
jmp .Lmain_return

.Lmain_return:
leave $40
ret

Note: arr is at offset 0,
i is vr10, p is vr11

Compute offset of element at
index i, add to base address,
put element address in vr14

Pointer arithmetic (example)
/* C code */
int read_i32(void);

int main(void) {
int arr[10], i, *p;
i = read_i32();
p = arr + i;
*p = 42;
return *p;

}

/* high-level IR */
main:

enter $40
call read_i32
mov_l vr12, vr0
mov_l vr10, vr12
localaddr vr13, $0
sconv_lq vr15, vr10
mul_q vr16, vr15, $4
add_q vr14, vr13, vr16
mov_q vr11, vr14
mov_l vr17, $42
mov_l (vr11), vr17
mov_l vr0, (vr11)
jmp .Lmain_return

.Lmain_return:
leave $40
ret

Note: arr is at offset 0,
i is vr10, p is vr11

Store computed element
address in p

Pointer arithmetic (example)
/* C code */
int read_i32(void);

int main(void) {
int arr[10], i, *p;
i = read_i32();
p = arr + i;
*p = 42;
return *p;

}

/* high-level IR */
main:

enter $40
call read_i32
mov_l vr12, vr0
mov_l vr10, vr12
localaddr vr13, $0
sconv_lq vr15, vr10
mul_q vr16, vr15, $4
add_q vr14, vr13, vr16
mov_q vr11, vr14
mov_l vr17, $42
mov_l (vr11), vr17
mov_l vr0, (vr11)
jmp .Lmain_return

.Lmain_return:
leave $40
ret

Note: arr is at offset 0,
i is vr10, p is vr11

Store 42 in the array element p
points to

Array subscript

Code generated for a[i] should be the same as the code generated for
*(a + i) :
1. Pointer arithmetic to compute address of element
2. Dereference computed pointer to element

Multidimensional arrays

Consider a two-dimensional array: int a[10][5];

The type of this array is “array of 10 elements of type array of 5 elements of
type int”.

Your code generator should not need to implement a special case for
multidimensional arrays! As long as in the computation of an element address
the index is scaled by the correct element size, the address computation will
be accurate. In this example, the element size of the array a is 20 (5 int
elements of size 4.)

Efficiency of element references

Consider the following C code and generated low-level code for the access to
the array element at index i:

/* C code */
int sum(int *arr, int n) {

int i, sum;
sum = 0;
for (i = 0; i < n; i = i + 1) {

sum = sum + arr[i];
}
return sum;

}

/* Low-level code (loop body) */
movl %ebx, %r10d
movslq %r10d, %r10
movq %r10, %r9
movq %r9, %r10
imulq $4, %r10
movq %r10, %r8
movq %r13, %r10
addq %r8, %r10
movq %r10, %rcx
movl (%rcx), %edx
movl %r12d, %r10d
addl %edx, %r10d
movl %r10d, %esi
movl %esi, %r12d

Note: the register allocator has allocated
CPU registers for temp values, %r12d has
been allocated for sum, and %r13 has been
allocated for arr.

Explicit address computations

Emitting explicit multiply and add instructions for array element address
computations
▶ Requires multiple instructions per array element reference
▶ Requires CPU registers to hold temporary values

The CPU instruction set may have addressing modes that are useful for array
element references. Can we take advantage of them?

Peephole optimization to utilize addressing modes
Generated low-level code for the access to the array element at index i, before
and after peephole optimization:

/* Low-level code (before) */
movl %ebx, %r10d
movslq %r10d, %r10
movq %r10, %r9
movq %r9, %r10
imulq $4, %r10
movq %r10, %r8
movq %r13, %r10
addq %r8, %r10
movq %r10, %rcx
movl (%rcx), %edx

/* Low-level code (after) */
movslq %ebx, %r9
movl (%r13,%r9,4), %edx

Note: the register allocator has
allocated CPU registers for temp
values, %r12d has been allocated for
sum, and %r13 has been allocated for
arr.

Idioms in generated code

Explicit address computation results in predictable idioms in the generated
code.

Peephole optimization can recognize these idioms and replace them with more
efficient ones.

Structs

Structs

For a struct type, the compiler needs to determine
▶ An offset for each field
▶ The number of bytes required to represent an instance of a struct

Field offsets must be guarantee alignment according to their data types.
▶ E.g., a field with type int field must have an offset that is a multiple of

4, since sizeof(int) = 4

Generally, a struct instance is similar to an array.
▶ It’s an lvalue, and generated code will need to know which virtual register

contains its base address
▶ Addresses of a field in a struct instance can be computed by adding its

offset to the instance’s base address

Example struct layout
struct Player {

char name[7];
int x, y;
char symbol;

};

One padding byte is needed between name and x
fields to ensure x has an offset that is a multiple
of 4.

Three padding bytes are needed at end of struct
(after the symbol field) to ensure that instances
have addresses aligned on a multiple of 4.

An instance of struct Player requires 20 bytes
of storage in memory aligned on an address that
is a multiple of 4.

Struct type (example)
int read_i32(void);
void strcpy(char *dst,

const char *src);

struct Player {
char name[7];
int x, y;
char symbol;

};

int main(void) {
struct Player p;
strcpy(p.name, "Frodo");
p.x = 17;
p.y = 42;
p.symbol = '@';
return 0;

}

Struct type (example)
int read_i32(void);
void strcpy(char *dst,

const char *src);

struct Player {
char name[7];
int x, y;
char symbol;

};

int main(void) {
struct Player p;
strcpy(p.name, "Frodo");
p.x = 17;
p.y = 42;
p.symbol = '@';
return 0;

}

/* high-level IR */
localaddr vr10, $0
mov_q vr11, $0
add_q vr12, vr10, vr11
mov_q vr1, vr12
mov_q vr13, $_str0
mov_q vr2, vr13
call strcpy

Pass address of p.name as
first argument to strcpy
(p’s storage is at offset 0 in
the stack frame, name is at
offset 0 in p)

Struct type (example)
int read_i32(void);
void strcpy(char *dst,

const char *src);

struct Player {
char name[7];
int x, y;
char symbol;

};

int main(void) {
struct Player p;
strcpy(p.name, "Frodo");
p.x = 17;
p.y = 42;
p.symbol = '@';
return 0;

}

/* high-level IR */
mov_l vr14, $17
localaddr vr15, $0
mov_q vr16, $8
add_q vr17, vr15, vr16
mov_l (vr17), vr14

Store 17 in p.x (x is at
offset 8 in p)

Struct type (example)
int read_i32(void);
void strcpy(char *dst,

const char *src);

struct Player {
char name[7];
int x, y;
char symbol;

};

int main(void) {
struct Player p;
strcpy(p.name, "Frodo");
p.x = 17;
p.y = 42;
p.symbol = '@';
return 0;

}

/* high-level IR */
mov_l vr18, $42
localaddr vr19, $0
mov_q vr20, $12
add_q vr21, vr19, vr20
mov_l (vr21), vr18

Store 42 in p.y (y is at
offset 12 in p)

Struct type (example)
int read_i32(void);
void strcpy(char *dst,

const char *src);

struct Player {
char name[7];
int x, y;
char symbol;

};

int main(void) {
struct Player p;
strcpy(p.name, "Frodo");
p.x = 17;
p.y = 42;
p.symbol = '@';
return 0;

}

/* high-level IR */
mov_b vr22, $64
localaddr vr23, $0
mov_q vr24, $16
add_q vr25, vr23, vr24
mov_b (vr25), vr22

Store 64 (ASCII code of
'@' in p.symbol (symbol
is at offset 16 in p)

Explicit address computation vs. address mode (again)

As with array subscript references, code generated for field references in which
the field’s address is computed explicitly can be rewritten by the peephole
optimizer. E.g., the code for p.x = 17; :

/* before peephole optimization */
leaq -24(%rbp), %r10
movq %r10, %r9
movq %r9, %r10
addq $8, %r10
movq %r10, %r8
movl $17, (%r8)

/* after peephole optimization */
leaq -24(%rbp), %r9
movl $17, 8(%r9)

	Functions and function calls
	Pointers and lvalues
	Arrays
	Structs

