
Lecture 16: Conditions, decisions, and loops

David Hovemeyer

October 23, 2024

601.428/628 Compilers and Interpreters

Today

▶ Conditions
▶ Decisions
▶ Loops
▶ Additional considerations

Conditions

Conditions

▶ A condition is an expression used as a truth value
▶ In C, any integer or pointer value can be used as a condition
▶ Integer: 0 is false, non-zero values are true
▶ Pointer: null pointer is false, non-null pointers are true

▶ Relational operators compare integer or pointer values to produce a truth
value
▶ <, >, ==, !=, etc.

▶ Logical operators operate on truth values
▶ &&. ||, !

▶ All relational and logical operators yield an int value which is required to
be either 1 (true) or 0 (false)

Values vs. control

Conditions are used for two related but distinct purposes:
1. To compute a truth value (1 or 0) as a data value
2. To control execution (i.e., when used in a control construct such as if,

if/else, a while loop, etc.)

In general, these uses require somewhat different code generation strategies.

Recommendation: generate code for conditions to compute a boolean data
value. When the result of a condition is used in a control structure (decision
or loop), check whether the computed data value is true or false.

This approach will generate slightly convoluted code, but
▶ it avoids special cases for purpose #1 vs. #2
▶ the generated code will be easy to simplify later on

Handling relational operators in high-level IR

The high-level IR has dedicated instructions for relational operators. These
operators behave much like other ALU instructions: there are two source
operands and one destination operand.

E.g., cmplt_l compares two 32-bit signed integers and
▶ stores the value 1 in the destination if the first source operand is less than

the second source operand, and
▶ stores the value 0 in the destination otherwise

/* Store 1 in vr15 if vr10 < vr11, otherwise store 0 in vr15 */
cmplt_l vr15, vr10, vr11

Condition as computing a value

/* C code */
int a, b, c;

a = read_i32();
b = read_i32();

c = a < b;

print_i32(c); // prints 0 or 1

/* generated high-level IR */
call read_i32
mov_l vr13, vr0
mov_l vr10, vr13
call read_i32
mov_l vr14, vr0
mov_l vr11, vr14
cmplt_l vr15, vr10, vr11
mov_l vr12, vr15
mov_l vr1, vr12
call print_i32

Note: a is vr10, b is vr11, c is vr12

Conditional jumps in high-level IR

The high-level IR has two conditional jump instructions, cjmp_t (conditional
jump if true) and cjmp_f (conditional jump if false.)

These instructions consume the boolean value computed by a comparison in
order to conditionally transfer control to a target instruction.

Condition as controlling execution

/* C code */
int i, n, sum;

n = read_i32();

i = 0;
sum = 0;

while (i < n) {
sum = sum + i;
i = i + i;

}

print_i32(sum);

/* high-level IR */
call read_i32
mov_l vr13, vr0
mov_l vr11, vr13
mov_l vr14, $0
mov_l vr10, vr14
mov_l vr15, $0
mov_l vr12, vr15
jmp .L1

.L0: add_l vr13, vr12, vr10
mov_l vr12, vr13
mov_l vr14, $1
add_l vr15, vr10, vr14
mov_l vr10, vr15

.L1: cmplt_l vr14, vr10, vr11
cjmp_t vr14, .L0
mov_l vr1, vr12
call print_i32

Note: i is vr10,
n is vr11, sum is
vr12

Computing a boolean value in low-level code

In x86-64, the setX instructions set an 8-bit register to 1 or 0 based on
testing the condition codes set by a previous ALU instruction (usually cmp.) X
represents the equality or inequality being tested.

For example, the code
cmpl %r11d, %r10d
setl %al

would set the 8-bit %al register to 1 if the 32-bit signed value in %r10d is less
than the 32-bit signed value in %r11d, and set %al to 0 otherwise.

Zero-extending the 8-bit value resulting from a setX instruction yields a
32-bit int value that is either 1 or 0, which can be the result of the condition.

Computing a boolean value in low-level code (example)

/* in high-level IR */
cmplt_l vr14, vr10, vr11

/* in low-level IR */
movl -48(%rbp), %r10d /* cmplt_l vr14, vr10, vr11 */
cmpl -40(%rbp), %r10d
setl %r10b
movzbl %r10b, %r11d
movl %r11d, -16(%rbp)

Note that the low-level code generator allocated storage for vr10, vr11, and
vr14 as (respectively) -48(%rbp), -40(%rbp), and -16(%rbp).

Using a condition for control flow in low-level code

If every condition yields a boolean value, control flow can be implemented by
▶ comparing the computed boolean value to 0, and then
▶ executing a conditional jump

Using a condition for control flow in low-level code (example)

/* in high-level IR */
cmplt_l vr14, vr10, vr11
cjmp_t vr14, .L0

/* in low-level IR */
movl -48(%rbp), %r10d /* cmplt_l vr14, vr10, vr11 */
cmpl -40(%rbp), %r10d
setl %r10b
movzbl %r10b, %r11d
movl %r11d, -16(%rbp)
cmpl $0, -16(%rbp) /* cjmp_t vr14, .L0 */
jne .L0

Note that the low-level code generator allocated storage for vr10, vr11, and
vr14 as (respectively) -48(%rbp), -40(%rbp), and -16(%rbp).

Simplifying control flow

Peephole optimization can be very effective at simplifying idioms in generated
code, including simplifying code generated for control flow. For example:
/* Prior to peephole optimization */
movl %r12d, %r10d /* cmplt_l vr14<%r9d>, vr10, vr11 */
cmpl %r13d, %r10d
setl %r10b
movzbl %r10b, %r11d
movl %r11d, %r9d
cmpl $0, %r9d /* cjmp_t vr14<%r9d>, .L0 */
jne .L0

/* After peephole optimization */
cmpl %r13d, %r12d /* cmplt_l vr14<%r9d>, vr10, vr11 */
jl .L0

(Note that in the generated code, the register allocator has assigned CPU
registers as storage for the virtual registers used.)

Decisions

Decisions

A decision makes a choice about a condition or other data value to
conditionally-execute code.

Examples: if statements, if/else statements, switch statements.

The high-level code generator should generate labels (.L0, .L1, etc.) for the
conditionally-executed code as necessary. These will be targets of
unconditional and conditional jump instructions.

if statements

/* C code */
int a, b;
a = read_i32();
b = read_i32();
if (a < b) {

print_i32(42);
}
...rest of code...

/* high-level IR */
call read_i32
mov_l vr12, vr0
mov_l vr10, vr12
call read_i32
mov_l vr13, vr0
mov_l vr11, vr13
cmplt_l vr14, vr10, vr11
cjmp_f vr14, .L0
mov_l vr12, $42
mov_l vr1, vr12
call print_i32

.L0:
...rest of code...

Note: a is vr10, b is vr11

Check condition,
conditional branch

if statements

/* C code */
int a, b;
a = read_i32();
b = read_i32();
if (a < b) {

print_i32(42);
}
...rest of code...

/* high-level IR */
call read_i32
mov_l vr12, vr0
mov_l vr10, vr12
call read_i32
mov_l vr13, vr0
mov_l vr11, vr13
cmplt_l vr14, vr10, vr11
cjmp_f vr14, .L0
mov_l vr12, $42
mov_l vr1, vr12
call print_i32

.L0:
...rest of code...

Note: a is vr10, b is vr11

Body of if statement

if/else statements
/* C code */
int a, b;
a = read_i32();
b = read_i32();
if (a < b) {

print_i32(42);
} else {

print_i32(17);
}
...rest of code...

/* high-level IR */
call read_i32
mov_l vr12, vr0
mov_l vr10, vr12
call read_i32
mov_l vr13, vr0
mov_l vr11, vr13
cmplt_l vr14, vr10, vr11
cjmp_f vr14, .L1
mov_l vr12, $42
mov_l vr1, vr12
call print_i32
jmp .L0

.L1:
mov_l vr12, $17
mov_l vr1, vr12
call print_i32

.L0:
...rest of code...

Note: a is vr10, b is vr11

Check condition,
conditional branch

Note: a is vr10,
b is vr11

if/else statements
/* C code */
int a, b;
a = read_i32();
b = read_i32();
if (a < b) {

print_i32(42);
} else {

print_i32(17);
}
...rest of code...

/* high-level IR */
call read_i32
mov_l vr12, vr0
mov_l vr10, vr12
call read_i32
mov_l vr13, vr0
mov_l vr11, vr13
cmplt_l vr14, vr10, vr11
cjmp_f vr14, .L1
mov_l vr12, $42
mov_l vr1, vr12
call print_i32
jmp .L0

.L1:
mov_l vr12, $17
mov_l vr1, vr12
call print_i32

.L0:
...rest of code...

Note: a is vr10, b is vr11

“If true” and “if false”‘
blocks

Note: a is vr10,
b is vr11

if/else statements
/* C code */
int a, b;
a = read_i32();
b = read_i32();
if (a < b) {

print_i32(42);
} else {

print_i32(17);
}
...rest of code...

/* high-level IR */
call read_i32
mov_l vr12, vr0
mov_l vr10, vr12
call read_i32
mov_l vr13, vr0
mov_l vr11, vr13
cmplt_l vr14, vr10, vr11
cjmp_f vr14, .L1
mov_l vr12, $42
mov_l vr1, vr12
call print_i32
jmp .L0

.L1:
mov_l vr12, $17
mov_l vr1, vr12
call print_i32

.L0:
...rest of code...

Note: a is vr10, b is vr11

Avoid fall-through from
“if true” to “if false”
block

Note: a is vr10,
b is vr11

switch statements

A switch statement could be translated into an equivalent series of if/else
if statements:

int a;
a = ...some value...;
switch (a) {
case 0:

...code...
break;

case 1:
case 2:

...code...
break;

default:
...code...

}

int a;
a = ...some value...;
if (a == 0) {

...code...
} else if (a == 1 || a == 2) {

...code...
} else {

...code...
}

Jump tables

If the values of the cases are “dense” within a range, a switch statement can
be compiled as a jump table. The idea:
1. An array is allocated where each entry contains the code address of the

first instruction in a case
2. The switched value is converted into an index into this array (generally by

subtracting the value of the minimum case value)
3. Executing the correct case means retrieving the code address from the

array using the computed index, and jumping to that instruction

A jump table is O(1) rather than O(N), where N is the number of cases.

Loops

while loops

A while loop is the most general kind of loop in C.

Suggested code generation strategy:
▶ The code to check loop condition should be labeled and generated at the

end of the loop body; it conditionally jumps to the beginning of the loop
body if the condition evaluates as true

▶ To enter the loop, jump to the code which checks the loop condition

Example while loop
/* C code */
while (i < n) {

sum = sum + i;
i = i + 1;

}
...rest of code...

/* High-level IR */
jmp .L1

.L0:
add_l vr13, vr12, vr10
mov_l vr12, vr13
mov_l vr14, $1
add_l vr15, vr10, vr14
mov_l vr10, vr15

.L1:
cmplt_l vr14, vr10, vr11
cjmp_t vr14, .L0
...rest of code...

Note: i is vr10, n is
vr11, sum is vr12

Example while loop
/* C code */
while (i < n) {

sum = sum + i;
i = i + 1;

}
...rest of code...

/* High-level IR */
jmp .L1

.L0:
add_l vr13, vr12, vr10
mov_l vr12, vr13
mov_l vr14, $1
add_l vr15, vr10, vr14
mov_l vr10, vr15

.L1:
cmplt_l vr14, vr10, vr11
cjmp_t vr14, .L0
...rest of code...

Note: i is vr10, n is
vr11, sum is vr12

Enter loop by jumping to
the loop condition check

Example while loop
/* C code */
while (i < n) {

sum = sum + i;
i = i + 1;

}
...rest of code...

/* High-level IR */
jmp .L1

.L0:
add_l vr13, vr12, vr10
mov_l vr12, vr13
mov_l vr14, $1
add_l vr15, vr10, vr14
mov_l vr10, vr15

.L1:
cmplt_l vr14, vr10, vr11
cjmp_t vr14, .L0
...rest of code...

Note: i is vr10, n is
vr11, sum is vr12

Check loop condition, jump
to top of loop if condition is
true

Example while loop
/* C code */
while (i < n) {

sum = sum + i;
i = i + 1;

}
...rest of code...

/* High-level IR */
jmp .L1

.L0:
add_l vr13, vr12, vr10
mov_l vr12, vr13
mov_l vr14, $1
add_l vr15, vr10, vr14
mov_l vr10, vr15

.L1:
cmplt_l vr14, vr10, vr11
cjmp_t vr14, .L0
...rest of code...

Note: i is vr10, n is
vr11, sum is vr12

Execute body of loop

do/while loops

A do/while loop is mostly the same as a while loop. The main difference is
that you would omit the unconditional jump to the loop condition check that
you would use to enter a while loop.

do/while example

/* C code */
do {

sum = sum + i;
i = i + i;

} while (i < n);
...rest of code...

/* High-level IR */
.L0:

add_l vr13, vr12, vr10
mov_l vr12, vr13
add_l vr14, vr10, vr10
mov_l vr10, vr14
cmplt_l vr15, vr10, vr11
cjmp_t vr15, .L0
...rest of code...

Note: i is vr10, n is vr11, sum is vr12

do/while example

/* C code */
do {

sum = sum + i;
i = i + i;

} while (i < n);
...rest of code...

/* High-level IR */
.L0:

add_l vr13, vr12, vr10
mov_l vr12, vr13
add_l vr14, vr10, vr10
mov_l vr10, vr14
cmplt_l vr15, vr10, vr11
cjmp_t vr15, .L0
...rest of code...

Note: i is vr10, n is vr11, sum is vr12
Execute body of loop

do/while example

/* C code */
do {

sum = sum + i;
i = i + i;

} while (i < n);
...rest of code...

/* High-level IR */
.L0:

add_l vr13, vr12, vr10
mov_l vr12, vr13
add_l vr14, vr10, vr10
mov_l vr10, vr14
cmplt_l vr15, vr10, vr11
cjmp_t vr15, .L0
...rest of code...

Note: i is vr10, n is vr11, sum is vr12
Check loop condition

for loops

A for loop is essentially the same as a while loop. The only difference is
that a variable can be initialized before the loop starts, and an update is
automatically executed at the end of each loop iteration.

Equivalence of for and while loops

/* for loop */
for (initialization; condition; update) {

body
}

/* equivalent while loop */
initialization
while (condition) {

body
update

}

Additional considerations

Additional considerations

In general, if a conditional branch (e.g., cjmp_t) is not taken, control will “fall
through” to the next instruction sequentially.

When an InstructionSequence is converted to a control-flow graph, these
“fall through” control edges are potentially problematic.
▶ The reason is that basic blocks connected by a fall-through edge must be

adjacent when converted from a graph back to a linear sequence of
instructions

It’s not a bad idea to insert explicit jmp instructions and labels to make
fall-through edges explicit.
▶ That way, the code works even if the basic blocks involved in the

fall-through are not sequential when converted to a linear representation

Making fall-through edges explicit

/* high-level IR with
* implicit fall-through */

cmplt_l vr14, vr10, vr11
cjmp_f vr14, .L1
mov_l vr12, $42
mov_l vr1, vr12
call print_i32
jmp .L0

.L1:
mov_l vr12, $17
mov_l vr1, vr12
call print_i32

.L0:
...rest of code...

/* high-level IR with
* explicit fall-through */

cmplt_l vr14, vr10, vr11
cjmp_f vr14, .L1
jmp .L2

.L2:
mov_l vr12, $42
mov_l vr1, vr12
call print_i32
jmp .L0

.L1:
mov_l vr12, $17
mov_l vr1, vr12
call print_i32

.L0:
...rest of code...

Removing unnecessary jumps

The unnecessary jmp instructions inserted to make fall-through explicit can be
easily detected and removed during code optimization.

	Conditions
	Decisions
	Loops
	Additional considerations

