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Code generation for expressions



Code generation for expressions

▶ Expression: construct which computes a value
▶ In C: could also assign to a variable, but let’s wait to discuss that

possibility
▶ We’ll focus on generating high-level IR code (RISC-like, infinite number of

“virtual” registers)
▶ This is surprisingly easy!



Something important to understand

The goal of initial code generation (from the annotated AST) is to generate
high-level code that is correct, consistent, and straightforward.

Efficiency of the generated code is not the main concern at this point.

Inefficiencies can be addressed later on when performing code optimization.



Code generation via recursive treewalk

▶ Generating code for an expression is two distinct but related tasks:
1. Generating a sequence of zero or more instructions which, when

executed, will compute the result value of evaluating the expression
2. Determining where the result of the evaluation is stored

▶ Task 1 is accomplished by recursively visiting subexpressions (if necessary),
then emitting instruction(s) as needed to “complete” the computation
▶ Literal values and variable references are base cases in this recursion

▶ Task 2 is accomplished by allocating a temporary virtual register to hold
the result of the evaluation: the emitted code will place the result value
there
▶ Suggestion: each AST node contains an Operand specifying the

location where the evaluation result is stored (normally a virtual
register)



Code generation pseudo-code

CodeGen(ast) {
if (ast→get_tag() = LITERAL) {

ival ← make_immediate(ast→get_ival())
dest ← alloc_tmp_vreg()
emit(HINS_mov, dest, ival)
ast→set_operand(dest)

} else if (ast→get_tag() = VARREF) {
val ← get_var_storage_loc(ast→get_sym())
ast→set_operand(val)

} else if (ast→get_tag() = BINOP) {
opcode ← get_binop_opcode(ast→get_kid(0))
left ← ast→get_kid(1), right = ast→get_kid(2)
CodeGen(left)
CodeGen(right)
dest ← alloc_tmp_vreg()
emit(opcode, dest, left→get_operand(), right→get_operand())
ast→set_operand(dest)

} else ...other cases...
}



Some observations

▶ The code could also be implemented as an AST visitor (which is how we
recommend that you implement high-level codegen in Assignment 4)

▶ The make_immediate() function yields an immediate operand (i.e., a
literal value)

▶ The get_var_storage_loc() function yields an operand referring to the
storage location for a variable (given a pointer to its symbol table entry)
▶ More about this soon

▶ The alloc_tmp_vreg() function allocates a “temporary” virtual register to
put the computed value in (remember that there are an “infinite” number
of virtual registers)

▶ The AST node is annotated with an operand indicating where the result
of the evaluation is (i.e., the temporary vreg)



An example

int poly(int x, int a) {
return a * x + 42 * x;

}

Assume:
▶ x is vr10
▶ a is vr11
▶ Allocation of temporary vregs starts

with vr12



An example

x is vr10, a is vr11, temp vreg
allocation starts with vr12



An example

x is vr10, a is vr11, temp vreg
allocation starts with vr12

mul_l vr12, vr11, vr10
mov_l vr13, $42
mul_l vr14, vr13, vr10
add_l vr15, vr12, vr14



Discussion

▶ Code generation for variable references doesn’t require any instructions if
the variable is a vreg

▶ The code generator needs to be aware of operand sizes; e.g., for 32-bit
int operand values, the “_l” suffix (e.g., mov_l) is used
▶ The semantic analyzer will have annotated each expression node with a

type, so the code generator can just ask the type for its storage size



Variables and storage



What is a variable?

A variable is a storage location in which a value belonging to the variable’s
data type may be stored.

Variables can be referred to in the program in various ways:
▶ Normal “named” variable: x, p, foo, etc.
▶ Array element: a[0], bar[42]
▶ Field of struct instance: p.x



Storage

A variable’s storage can be provided in two ways.

If a variable’s type is has sufficiently small representation (generally, 8 bytes or
less), its storage can be a register.

If a variable’s type requires a representation whose size exceeds what will fit in
a register, its storage must be in main memory.

Also, C generally1 requires memory storage for
▶ Arrays
▶ Static or global variables (of any size)
▶ Instances of struct types
▶ A variable whose address is taken (meaning a pointer to that variable’s

storage exists)

1A really clever compiler might be able to use register storage for some of these in some cases.



Implications for code generation

Since the high-level code generator will need to have a way of generating code
for variable references, it will need to have some notion of storage allocation
for variables.

This initial storage allocation will need to be done in such a way that later on,
when low-level (target) code is generated, accesses to registers and memory
work correctly.
▶ For example, variables allocated in memory should respect alignment

requirements
▶ For this reason, high-level code might not be completely independent of

the target architecture



Suggested approach

You might approach the problem of allocating storage for variables as follows:
▶ For each local variable whose storage could be a virtual register, allocate a

specific virtual register for that variable
▶ For arrays, struct instances, and any variable whose address is taken,

allocate a chunk of memory with the appropriate size and alignment in
the stack frame
▶ The high-level enter and leave instructions are used to allocate and

deallocate memory in the stack frame being used for local variables
▶ The high-level localaddr instruction computes the address of memory

at a specific offset in the current stack frame and places it in a virtual
register

Note that we neither require nor expect your compiler to handle global
variables (although these aren’t difficult.)



But there aren’t an infinite number of registers!

▶ The high-level code generator assumes an unlimited supply of virtual
registers

▶ But actual CPUs have only a limited number of registers
▶ This isn’t really a problem!



Why we don’t need to worry (reason #1)

Just because the high-level code generator calls a location a “virtual register”
doesn’t mean that location needs to be a CPU register.

It could be a memory location in the stack frame.

For the initial code generator(s) you implement in Assignment 4, we
recommend just allocating storage for all virtual registers in the function’s
stack frame (alongside any variables requiring memory storage.)

This approach will produce inefficient code, but it is easy and it will work.



Why we don’t need to worry (reason #2)

Looking ahead:
▶ Actual CPU registers will only be needed for “live” values during

computations: most virtual registers store a live value during a very brief
timespan (usually just a few instructions)
▶ Once the value in a register “dies” (is no longer needed), its CPU

register can be used for a different value
▶ So, a small number of CPU registers is usually sufficient for live values

▶ In Assignment 5, you can use register allocation to use CPU registers as
needed for live values
▶ You can also decide to allocate CPU registers for some local variables



Recording decisions about storage allocation

We recommend that you use each variable’s symbol table entry to store
information about what the variable’s storage location is.

This will generally be either
1. A virtual register (e.g., vr10)
2. An offset within the memory in the stack frame (e.g., 16)

To create an Operand for this information: if the storage is a vreg, this is
trivial (e.g., operand is vr10.) If the storage is in memory, code may be
required to load the variable’s memory address into a vreg:

localaddr vr15, $16 /* operand (vr15) refers to the variable */



Implicit (and explicit) conversions



Conversions

At some points in the program execution, it will be necessary to convert a
value from one type to another.

This may be necessary because of implicit conversion rules, or explicit
conversions (type casts) in the code.

Explicit conversions appear directly in the AST (i.e., AST_CAST_EXPRESSION
nodes.)

It’s not a bad idea to represent implicit conversions explicitly in the AST as
well. (The semantic analyzer can add them.)



Implicit conversion example

Simple example:

short example(char a, char b) {
return a + b;

}

C requires all integer operations to be performed with int as the minimum
precision. Also, the resulting int sum must be converted to short (the return
type.) So this program is equivalent to

short example(char a, char b) {
return (short) ((int) a + (int) b);

}



Representing implicit conversions in the AST

⇒



Representing implicit conversions in the AST

⇒



Code generation for integer conversions

A conversion of an integer value could be a promotion or a truncation:
▶ Promotion: less precise type converted to more precise type
▶ Truncation: more precise type converted to less precise type

For integer promotions, use the sconv or uconv high-level instructions
depending on whether the value being converted is signed or unsigned. E.g.,
sconv_bl to convert a char (8-bit signed integer) to int (32-bit signed
integer.)

Nothing special needs to be done for a truncation: just use a mov with an
operand size appropriate for the converted-to type. For example, use mov_w to
truncate an int value to a (16-bit) short value.



An example

Assume a is vr10, b is vr11



An example

Assume a is vr10, b is vr11

sconv_bl vr12, vr10
sconv_bl vr13, vr11
add_l vr14, vr12, vr13
mov_w vr15, vr14



Assignments



Assignments

An assignment to a variable stores a computed value in that variable. This is
as simple as emitting a mov instruction (of the appropriate size) to copy the
computed value from its location (usually a temporary vreg) to the variable’s
storage location.

C has the additional quirk that assignments yield a value. For example:

int a, b;
a = (b = 3); // assigns 3 to b, then assigns 3 to a



lvalues

An expression is an lvalue if it has a (potentially) assignable storage location.
Variables (including array elements and struct fields) are lvalues. Dereferenced
pointers are also lvalues.

So, your compiler should be prepared to handle any assignment where the
subexpression on the left-hand side is an lvalue.



Memory references

The “assembly” notation for high-level code uses a similar convention to
indicate a memory reference as “AT&T style” x86-64 assembly language:
▶ vr10 refers to virtual register 10
▶ (vr10) refers to the memory location that the pointer value in vr10

points to



Easy case: variable’s storage is a vreg

If a variable’s storage is a virtual register, an assignment is trivial: use a mov to
copy the computed value (the right-hand side of the assignment) to that vreg.

/* C code */
int x;
x = 2 + 3;

/* translation (x is vr10) */
mov_l vr11, $2
mov_l vr12, $3
add_l vr13, vr11, vr12
mov_l vr10, vr13



Harder case: variable’s storage is in memory

If a variable’s storage is in memory, an assignment must
1. Load the variable’s address into a vreg
2. Move the computed value to the location the vreg points to

/* C code */
int x;
int *p;
p = &x; // force x to have

// memory storage
x = 2 + 3;

/* translation (p is vr10,
x is at offset 0 in
local storage) */

localaddr vr11, $0
mov_q vr10, vr11
mov_l vr12, $2
mov_l vr13, $3
add_l vr14, vr12, vr13
localaddr vr15, $0
mov_l (vr15), vr14



Pointers and pointer operations



Pointers, address-of, dereference

▶ A pointer is the address of a storage location in memory
▶ The address-of operator (&) can be applied to any lvalue to yield a pointer

to the lvalue’s memory location
▶ The dereference operator (*) can be applied to any pointer to refer to the

storage of the lvalue that the pointer points to
▶ This sounds complicated, but there’s a really simple way to think about

these operations!



An example

Let’s say that x is an int variable whose storage is allocated in memory, at
offset 16 in the stack frame’s local variable storage.

If we emit the instruction localaddr vr15, $16 , then vr15 is a pointer to
x’s storage in memory.

That means that the memory reference operand (vr15) is synonymous with x.

More generally, any lvalue can be described by an operand (vrN), where vrN
is the virtual register containing a pointer to the lvalue’s memory location.



Address-of

The address-of operator (&) converts an lvalue to a pointer.

If the variable x is represented by the operand (vr15), then vr15 is a pointer
to x. More generally, address-of is the conversion

(vrN) ⇒ vrN



Dereference

The dereference operator (*) converts a pointer to an lvalue.

If vr15 is a pointer to the variable x, then the operand (vr15) refers to the
variable x. More generally, dereference is the conversion

vrN ⇒ (vrN)



Pointer arithmetic

Pointer arithmetic involves adding an offset to a base pointer to compute the
address of an array element some number of elements displaced from where
the base pointer is pointing.

Array subscript operations are equivalent to dereferencing the result of a
pointer arithmetic computation.

More about these when we cover code generation for arrays.



Function calls



Function calls

In the high-level IR,
▶ vr1 through vr9 are argument registers
▶ vr0 is the return value register

So, when calling a function:
1. Generate code to evaluate argument expressions, and store the computed

values in the appropriate argument register
2. Emit a call instruction to call the named function
3. When the call returns, the return value is in vr0



Non-leaf functions

A function which does not call other functions is a leaf function.

When generating code for a non-leaf function (which does call other
functions), the argument registers must be used for both receiving argument
values from the caller and passing argument values to callees.

To make this work, at the beginning of a non-leaf function, each argument
register value should be copied to the storage for the corresponding parameter
variable (whose storage should be allocated the same way as any other local
variable.) Note that there is no harm in also doing this for leaf functions.

This approach makes all of the argument registers available for passing values
to called functions.
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