
Lecture 13: Intermediate representations

David Hovemeyer

October 14, 2024

601.428/628 Compilers and Interpreters

Agenda

▶ Purpose of intermediate representations
▶ ASTs
▶ Linear IRs
▶ Control-flow graphs
▶ IR forms and compiler phases
▶ Are IRs necessary?

Purpose of IRs

What is an intermediate representation (IR)?

▶ “Intermediate representation” is a general term for any data structure
which represents the program (or part of the program) being translated by
the compiler

▶ Compilers typically have various phases for which different forms of IR are
appropriate

▶ Examples:
▶ Abstract Syntax Tree (AST)
▶ Three-address code (a.k.a. “quads”)
▶ Control-flow graph

Facts, annotation of IR

▶ IRs represent facts about the program
▶ An IR can be annotated by these facts to make them available for

compiler phases that need them
▶ Kinds of facts:
▶ Facts that are directly embodied by the source code
▶ Facts inferred from the program’s syntax and semantics
▶ Facts that are created/chosen by the compiler (decisions made to

enable translation to the target language)

Examples of facts

▶ “Fact” = “something that is true at a particular program location”
▶ Examples:
▶ The name “a” refers to a variable of type int (embodied by the source

code)
▶ The variable “a” contains the value 123 (inferred fact)
▶ The storage for variable “a” is located at offset 12 in the stack frame

(created fact)

Abstract Syntax Trees

Abstract Syntax Trees

▶ ASTs are a “condensed” form of the parse tree based on the derivation
found by the parser based on the source language’s syntax rules
▶ Nodes are labeled to identify what kind of source construct they

represent (function def, variable declaration, etc.)
▶ AST nodes can be annotated with useful information
▶ Pointer to symbol table entry
▶ Type
▶ Whether or not an expression is an lvalue
▶ Etc.

Example C program

int main(int argc, char **argv) {
return argc + 1;

}

AST of example C program
AST_UNIT
+--AST_FUNCTION_DEFINITION

+--AST_BASIC_TYPE
| +--TOK_INT[int]
+--TOK_IDENT[main]
+--AST_FUNCTION_PARAMETER_LIST
| +--AST_FUNCTION_PARAMETER
| | +--AST_BASIC_TYPE
| | | +--TOK_INT[int]
| | +--AST_NAMED_DECLARATOR
| | +--TOK_IDENT[argc]
| +--AST_FUNCTION_PARAMETER
| +--AST_BASIC_TYPE
| | +--TOK_CHAR[char]
| +--AST_POINTER_DECLARATOR
| +--AST_POINTER_DECLARATOR
| +--AST_NAMED_DECLARATOR
| +--TOK_IDENT[argv]
+--AST_STATEMENT_LIST

+--AST_RETURN_EXPRESSION_STATEMENT
+--AST_BINARY_EXPRESSION

+--TOK_PLUS[+]
+--AST_VARIABLE_REF
| +--TOK_IDENT[argc]
+--AST_LITERAL_VALUE

+--TOK_INT_LIT[1]

AST implementation

▶ AST is just a tree
▶ Each node labeled with “tag” indicating meaning of construct
▶ Add member variables as needed to store annotations in nodes

NodeBase class

▶ In Assignments 3–5, the Node class inherits from NodeBase
▶ You can modify NodeBase to add member variables, member functions
▶ That way, if we needed to give you an updated version of Node, you

wouldn’t lose the things you added

Things to put in NodeBase

class NodeBase {
private:

Symbol *m_symbol;
std::shared_ptr<Type> m_type;
bool m_is_lvalue;
// etc...

Note that the pointer to Symbol (a symbol table entry object) should be a
“dumb” pointer because Symbol objects are owned by the SymbolTable
object in which they reside

Aside: source to source translation

▶ A compiler’s target language doesn’t need to be assembly language: it
could be source code

▶ The target language could even be the same as (or similar to) the source
language

▶ In a source-to-source translator, the syntax tree representing the original
source code should contain enough information to reproduce it precisely
▶ Which means you would need to avoid simplifications that would lose

information

Aside: DAGs

▶ DAGs (Directed Acyclic Graphs) can be useful for recognizing and
avoiding redundancy in computations

▶ Idea is to represent repeated computations with a single representation

DAG example

Computation: a × (3 + b) − (3 + b)/c

As AST:

DAG example

Computation: a × (3 + b) − (3 + b)/c

As DAG:

DAGs: worthwhile?

▶ Redundancies made explicit with DAGs could enable generation of more
efficient code

▶ E.g., a recursive treewalk, when visiting a previously-visited portion of the
DAG, could make use of the result of the previously-emitted code

▶ However, there are good techniques to find and eliminate redundant
computations in linear IRs (e.g., value numbering)

▶ Personal opinion: I’m a bit skeptical whether tree-based optimizations are
worth the effort

Linear IRs

Linear IRs

▶ A linear IR is an intermediate representation a sequence of instructions
▶ Reasons why this is useful:
▶ Is “closer” to target code than AST
▶ Concisely represents the operations the program needs to perform when

it is executed
▶ Can be fairly convenient for analysis and optimization

▶ Disadvantage: doesn’t naturally capture control flow (because execution
is not sequential when there is a branch)
▶ Control-flow graphs extend linear IRs to naturally represent control flow

Quads

▶ Quads are a common approach to implementing a linear IR
▶ Each instruction consists of
▶ A single operation
▶ Between 0 and 3 operands
▶ Most instructions: one destination operand, two source operands

▶ An operand could represent
1. A literal (immediate) value
2. A “register”
3. A memory reference via a pointer stored in a register

▶ Other forms of operands could be represented, but the ones above are
sufficient in general

Quads (format, examples)

General format of a quad:

Opcode Dest Source1 Source2

Example:

add_q vr10 vr11 vr12

Expressed as “assembly language”:

add_q vr10, vr11, vr12

Note that some opcodes might not require all three operands:

mov_q vr13 vr15

Are three operands enough?

▶ Quads with (up to) three operands are sufficient to describe computations
with one or two source operands and one destination operand
▶ This is completely sufficient to describe “ordinary” computations

One kind of operation that could require more than three operands is a Phi
node in an SSA (Static Single Assignment) representation

The Instruction class in Assignments 3–5 allow an arbitrary number of
operands, in case you want to add Phi nodes to your linear IR

“High-level” linear IR

▶ Many compilers have a “high-level” linear IR form (usually implemented
as quads) which is not directly related to the target language

▶ Typically, the high-level IR
▶ Is RISC-like (ALU operations have two source operands, one destination

operand)
▶ Has an “infinite” number of registers
▶ Has various opcodes to represent computations on values, loads

from/stores to memory, comparisons, control flow
▶ Why is this kind of representation useful?

Why high-level linear IR is useful

▶ A high-level linear IR represents the operations that the source program
should perform

▶ Because it’s “RISC-like”, computed values are given explicit names
▶ For example, in add_q vr10, vr11, vr12 , the sum of the 64-bit

values in vr11 and vr12 is given the name vr10
▶ An important class of optimizations involves detecting when a value

that is needed has been computed previously
▶ If each computation places its result in a location (register) with a

distinct name, it maximizes the extent to which computed values are
available

▶ Because high-level instructions don’t modify the contents of source
operands, they don’t “destroy” computed values which might be useful

Why not use an IR based on the target language?

▶ Since the eventual goal of the compiler is to produce a translation of the
source language to the target language, why not have an IR based on the
target language?

▶ Answer: we will need an IR based on the target language; we’ll refer to
this as the “low-level” linear IR

▶ However, before creating the low-level IR, the compiler will first produce a
translation as high-level IR
▶ It should be reasonably straightforward to translate the high-level linear

IR to equivalent low-level linear IR

Benefits of a high-level IR

▶ Compiler can have multiple “back ends” which translate to different
target languages (e.g., x86-64 assembly and ARM assembly)

▶ Optimizations can be implemented on the high-level IR (which is designed
to be amenable to analysis)
▶ Optimizations on low-level code are also possible and useful, but

optimizations on high-level IR are inherently shared between back ends)
▶ The target language may have features which make analysis and

optimization more difficult
▶ E.g., x86 instructions generally make one operand both a source and a

destination

Instruction implementation

class Instruction {
private:

int m_opcode;
unsigned m_num_operands;
std::vector<Operand> m_operands;
// ...

public:
// ...
unsigned get_num_operands() const;
const Operand &get_operand(unsigned index) const;
void set_operand(unsigned index, const Operand &operand);
// ...

};

Operand implementation

class Operand {
public:

enum Kind { /* ...members... */ };
private:

Kind m_kind;
int m_basereg, m_index_reg;
long m_imm_ival; // also used for offset and scale
std::string m_label;

public:
// ...
Kind get_kind() const;
int get_base_reg() const;
int get_index_reg() const;
long get_imm_ival() const;
long get_offset() const;
long get_scale() const;
// ...

};

Idea: an operand represents a register,
memory reference via a pointer in a
register, an immediate integer value, or a
label

A memory reference can optionally have
an offset, index, and/or scaling factor

Instruction sequence implementation
class InstructionSequence {
private:

struct Slot {
std::string label;
Instruction *ins;

};
std::vector<Slot> m_instructions;
std::string m_next_label;

public:
// ...
void append(Instruction *ins);
unsigned get_length() const;
Instruction *get_instruction(unsigned index) const;
void define_label(const std::string &label);
std::string get_label_at_index(unsigned index) const;
unsigned get_index_of_labeled_instruction(const std::string &label) const;
// ...

};

Idea: an InstructionSequence is a
sequence of Instruction objects
(quads)

Each Instruction may (optionally)
have a label (to allow it to be a control
flow target)

Aside: memory use

▶ Since an IR is an in-memory representation of a program (or part of a
program), the amount of memory it occupies can be significant

▶ For an ahead-of-time compiler on a modern system with a large amount
of main memory, might not be a huge concern

▶ For a just-in-time (JIT) compiler, size of IR could be very significant

Aside: level of detail in high-level IR

▶ In designing a high-level linear IR, there is a question concerning how
“detailed” the instructions should be

▶ More specifically, how close are the high-level IR instructions to operations
in the source program?

Example: assigning to an array element

Consider the following C code:

a[i] = x;

Assume vr10 is a pointer to the first element of a, vr11 is the variable i,
vr12 is the variable x, and the elements of a are 8 bytes in size.

How to translate this statement into high-level IR?

Option 1: high-level

Translating a[i] = x;

mov_q (vr10,vr11,8), vr12

This translation assumes the high-level IR has an indexed and scaled
addressing mode for memory references.

Option 2: low-level

Translating a[i] = x;

mul_q vr13, vr11, $8 /* compute element offset */
add_q vr14, vr10, vr13 /* add offset to base address */
mov_q (vr14), vr12

This translation does an explicit computation of the memory address of the
element at index i (note that vr13 and vr14 are “temp registers” allocated
to store partial results of the address computation)

Which approach is better?

Opinion: the low-level approach is better.

Making the high-level IR more complicated will make it more complicated to
analyze and transform.
▶ It will also make the IR larger (in memory)

Techniques such as peephole optimization can be very effective for replacing
explicit address computations with “fancy” addressing modes supported by the
target language.

More generally, “simple and explicit” is good for earlier (higher-level) IR forms.

Control-flow graphs

Labels and control flow

The Instructions in an InstructionSequence can have labels, which can
be referenced by control flow instructions.

Example C function:

int min(int a, int b) {
if (a < b)

return a;
else

return b;
}

High-level IR code for min function

enter $0
mov_l vr10, vr1
mov_l vr11, vr2
cmplt_l vr12, vr10, vr11
cjmp_f vr12, .L1
mov_l vr0, vr10
jmp .Lmin_return

.L1: mov_l vr0, vr11
jmp .Lmin_return

.Lmin_return: leave $0
ret

Note: vr0 is the return value register, and vr1 and vr2 are argument registers

Observation

Analyzing and optimizing a sequence of instructions is complicated if there is
control flow.

Idea: it’s easier to analyze and transform “straight line” sequences of
instructions

Control-flow graphs

A control-flow graph is a graph of basic blocks representing one function in
the program

A basic block is a sequence of instructions (e.g., quads) such that if there is a
branch, it is the last instruction in the sequence

A control-flow graph should have a single entry node and a single exit node
▶ If the function has multiple return statements, each basic block ending

with a return implicitly jumps to the common exit block

Example control-flow graph (min function)

Role of control-flow graphs

▶ Control-flow graphs allow for analyses and transformations which take
control-flow into account
▶ Especially: dataflow analyses

▶ A linear IR can be freely converted to and from a control-flow graph as
necessary

▶ We’ll have much more to say about control-flow graphs later on

IR forms and compiler phases

IR forms and compiler phases

▶ Different IR forms are appropriate at different points in the overall
transformation from source code to target code

▶ The computations to make progress in the transformation are sometimes
organized into “phases”
▶ The process of moving towards the eventual target code representation

is sometimes called “lowering”
▶ What these phases are called and what they do varies significantly from

compiler to compiler

Possible organization

Note that optimizations will convert between linear IR and control-flow graphs
as necessary

Are IRs necessary?

Utility and cost of IRs

▶ Intermediate representations are useful to allow analysis and
transformation of code so that the quality of the generated code can be
improved

▶ However, IRs can require significant memory
▶ If we’re not too concerned about the absolute efficiency of the generated

code, we could just generate it “on the fly”

“On the fly” translation

▶ Examples of on the fly codegen:
▶ Tiny C compiler (tcc): https://bellard.org/tcc/
▶ Some language virtual machines work this way when generating the

initial translation of a function (e.g., JikesRVM’s baseline compiler)
▶ This approach can make sense if the goal is to generate code quickly

https://bellard.org/tcc/

	Purpose of IRs
	Abstract Syntax Trees
	Linear IRs
	Control-flow graphs
	IR forms and compiler phases
	Are IRs necessary?

