
Lecture 8: LL(1) parsing

David Hovemeyer

September 23, 2024

601.428/628 Compilers and Interpreters



Today

▶ LL(1) parsing



Top-down parsing

▶ A top-down parsing algorithm attempts to derive an input string by
starting with the start symbol, and applying productions (and consuming
terminal symbols from the input string) until no nonterminals remain in
the working string

▶ Using the lexer for lookahead helps the parser choose productions correctly
▶ Recursive descent is a top-down parsing technique
▶ LL(1) is a generalized top-down parsing technique
▶ Given a suitable context-free grammar, an LL(1) parser can be generated



Parser generators

▶ A parser generator takes a context-free grammar as input, and generates
code for a parser

▶ The context-free grammar can be augmented with semantic actions to be
carried out as productions are chosen
▶ E.g., the semantic actions could build a parse tree or AST

▶ Advantage to using a parser generator: less work!
▶ Also, greater confidence in correctness of parser

▶ Disadvantage to using a parser generator: less control (especially for
generating meaningful error messages)



LL(1)

LL(1) is a simple table-driven top-down parsing algorithm

Requirements:
▶ Grammar has no left recursion
▶ For each nonterminal symbol A, FIRST+ sets of all productions on A are

disjoint (explanation soon)



FIRST sets

For a symbol K, FIRST(K) is the set of all terminal symbols which could begin
an expansion of K
▶ Also, FIRST(K) contains ϵ if K can expand to the empty string

Example grammar: A → a (A is the start symbol)
A → B
A → C
B → b
B → ϵ
C → c e
C → d e

FIRST(A) = {a, b, c, d, ϵ}



Computing FIRST set

The FIRST set of any terminal symbol t is trivially {t}

For any nonterminal A, FIRST(A) can be computed as follows:

For each production of the form A → s1 s2 s3 . . . sn:
If s1 is a terminal symbol, s1 is in FIRST(A)
If s1 is a nonterminal, then all symbols in FIRST(s1) are also in FIRST(A)
If for some i in 1 . . n, all symbols s1 . . si−1 are nonterminals which

can expand to ϵ, then all symbols in FIRST(si) are in FIRST(A)
If each s1 . . sn are nonterminals which can expand to ϵ,

then ϵ is in FIRST(A)



Generalizing FIRST to string of symbols

If β is a string of symbols s1, s2, . . ., sn

Then FIRST(β) is the union of FIRST(s1), FIRST(s2), . . ., FIRST(si) where
for all j such that 1 ≤ j < i , ϵ ∈ FIRST(sj)
▶ Except: ϵ ∈ FIRST(β) if and only if ϵ ∈ FIRST(sk) for all 1 ≤ k ≤ n



FOLLOW sets
For a nonterminal K, FOLLOW(K) is the set of terminal symbols which could
follow an expansion of K
▶ Useful for knowing when it is appropriate to apply an epsilon production

Example grammar: A → a B c (A is the start symbol)
A → C
C → d B G f
B → g
G → h
G → ϵ

FOLLOW(A) is { eof }

FOLLOW(B) is { c, f, h }

Note: eof is a special “end of file” token



Computing FOLLOW set

If S is the start symbol, then eof is in FOLLOW(S).

If a production A → α B β exists, then all symbols in FIRST(β) except ϵ are
in FOLLOW(B).

If either
▶ a production A → α B exists, or
▶ a production A → α B β exists, and FIRST(β) contains ϵ

then all symbols in FOLLOW(A) are in FOLLOW(B)



Example FIRST and FOLLOW sets

Let’s see the construction of FIRST and FOLLOW sets in action:

Grammar (start symbol is E): E → T E’
E’ → + T E’
E’ → - T E’
E’ → ϵ

T → F T’
T’ → * F T’
T’ → / F T’
T’ → ϵ
F → i
F → n

(Note that we removed the A nonterminal and its productions, since they
would cause the grammar to be unsuitable for LL(1) parsing)



Example FIRST and FOLLOW sets

Grammar (start
symbol is E):

E → T E’
E’ → + T E’
E’ → - T E’
E’ → ϵ
T → F T’
T’ → * F T’
T’ → / F T’
T’ → ϵ
F → i
F → n

Symbol FIRST FOLLOW
+
-
*
/
i
n
E
E’
T
T’
F



Example FIRST and FOLLOW sets

Grammar (start
symbol is E):

E → T E’
E’ → + T E’
E’ → - T E’
E’ → ϵ
T → F T’
T’ → * F T’
T’ → / F T’
T’ → ϵ
F → i
F → n

Symbol FIRST FOLLOW
+ { + } —
- { - } —
* { * } —
/ { / } —
i { i } —
n { n } —
E { i, n } { eof }
E’ { +, -, ϵ } { eof }
T { i, n } { +, -, eof }
T’ { *, /, ϵ } { +, -, eof }
F { i, n } { *, /, +, -, eof }



FIRST+ sets

For a production A → β, FIRST+(A → β) is

▶ FIRST(β) if ϵ ̸∈ FIRST(β)
▶ FIRST(β) ⋃ FOLLOW(A) otherwise

Production FIRST+ set
E → T E’
E’ → + T E’
E’ → - T E’
E’ → ϵ
T → F T’
T’ → * F T’
T’ → / F T’
T’ → ϵ
F → i
F → n

Symbol FIRST FOLLOW
+ { + } —
- { - } —
* { * } —
/ { / } —
i { i } —
n { n } —
E { i, n } { eof }
E’ { +, -, ϵ } { eof }
T { i, n } { +, -, eof }
T’ { *, /, ϵ } { +, -, eof }
F { i, n } { *, /, +, -, eof }



FIRST+ sets

For a production A → β, FIRST+(A → β) is

▶ FIRST(β) if ϵ ̸∈ FIRST(β)
▶ FIRST(β) ⋃ FOLLOW(A) otherwise

Production FIRST+ set
E → T E’ { i, n }
E’ → + T E’ { + }
E’ → - T E’ { - }
E’ → ϵ { ϵ, eof }
T → F T’ { i, n }
T’ → * F T’ { * }
T’ → / F T’ { / }
T’ → ϵ { ϵ, +, -, eof }
F → i { i }
F → n { n }

Symbol FIRST FOLLOW
+ { + } —
- { - } —
* { * } —
/ { / } —
i { i } —
n { n } —
E { i, n } { eof }
E’ { +, -, ϵ } { eof }
T { i, n } { +, -, eof }
T’ { *, /, ϵ } { +, -, eof }
F { i, n } { *, /, +, -, eof }



FIRST+ sets intuitively

The FIRST+ set for a production A → β tells us:
▶ If we want to expand an occurrence of A,
▶ What lookahead tokens indicate that A → β is the right production to

apply



LL(1) parse tables
An LL(1) parse table indicates, for each nonterminal in a grammar, what
production to apply based on what the next input token is
▶ Rows: nonterminal symbols
▶ Columns: terminal symbols and eof
▶ Entries: contain either a production number, or “invalid”

Building LL(1) parse table:

Mark all entries as “invalid”
For each production numbered p of the form A → β

For each terminal t ∈ FIRST+(A)
Put p in row A, column t

If eof ∈ FIRST+(A)
Put p in row A, column eof



LL(1) parse table example

Production FIRST+ set
(1) E → T E’ { i, n }
(2) E’ → + T E’ { + }
(3) E’ → - T E’ { - }
(4) E’ → ϵ { ϵ, eof }
(5) T → F T’ { i, n }
(6) T’ → * F T’ { * }
(7) T’ → / F T’ { / }
(8) T’ → ϵ { ϵ, +, -, eof }
(9) F → i { i }
(10) F → n { n }

+ - * / i n eof
E
E’
T
T’
F



LL(1) parse table example

Production FIRST+ set
(1) E → T E’ { i, n }
(2) E’ → + T E’ { + }
(3) E’ → - T E’ { - }
(4) E’ → ϵ { ϵ, eof }
(5) T → F T’ { i, n }
(6) T’ → * F T’ { * }
(7) T’ → / F T’ { / }
(8) T’ → ϵ { ϵ, +, -, eof }
(9) F → i { i }
(10) F → n { n }

+ - * / i n eof
E – – – – 1 1 –
E’ 2 3 – – – – 4
T – – – – 5 5 –
T’ 8 8 6 7 – – 8
F – – – – 9 10 –



LL(1) parsing

▶ Data structures are:
▶ Sequence of terminal symbols (tokens)
▶ Stack of symbols

▶ Start by pushing eof followed by the (nonterminal) start symbol



LL(1) parsing (continued)

▶ Repeatedly:
▶ Inspect top of stack
▶ If a terminal symbol, consume same symbol from input string and pop

it from the stack (error if next input string symbol doesn’t match)
▶ If eof, make sure we’re at end of input, if so, done (otherwise error)
▶ If a nonterminal symbol:
▶ Based on next input symbol, choose production number from table

(error if entry is “invalid”)
▶ Pop nonterminal from stack
▶ For each symbol on right hand side of chosen production from right

to left, push it onto the stack



Example parse
Rule Stack Input

– eof E ∧ n - i / n
(1) E → T E’
(2) E’ → + T E’
(3) E’ → - T E’
(4) E’ → ϵ
(5) T → F T’
(6) T’ → * F T’
(7) T’ → / F T’
(8) T’ → ϵ
(9) F → i
(10) F → n

+ - * / i n eof
E – – – – 1 1 –
E’ 2 3 – – – – 4
T – – – – 5 5 –
T’ 8 8 6 7 – – 8
F – – – – 9 10 –



Example parse
Rule Stack Input

– eof E ∧ n - i / n
1 eof E’ T ∧ n - i / n
5 eof E’ T’ F ∧ n - i / n
10 eof E’ T’ n ∧ n - i / n
→ eof E’ T’ n ∧ - i / n
8 eof E’ n ∧ - i / n
3 eof E’ T’ - n ∧ - i / n
→ eof E’ T’ n - ∧ i / n
5 eof E’ T’ F n - ∧ i / n
9 eof E’ T’ i n - ∧ i / n
→ eof E’ T’ n - i ∧ / n
7 eof E’ T’ F / n - i ∧ / n
→ eof E’ T’ F n - i / ∧ n
10 eof E’ T’ n n - i / ∧ n
→ eof E’ T’ n - i / n ∧

8 eof E’ n - i / n ∧

4 eof n - i / n ∧

(1) E → T E’
(2) E’ → + T E’
(3) E’ → - T E’
(4) E’ → ϵ
(5) T → F T’
(6) T’ → * F T’
(7) T’ → / F T’
(8) T’ → ϵ
(9) F → i
(10) F → n

+ - * / i n eof
E – – – – 1 1 –
E’ 2 3 – – – – 4
T – – – – 5 5 –
T’ 8 8 6 7 – – 8
F – – – – 9 10 –



Thoughts about LL(1)

Is LL(1) a “good” parsing algorithm?
▶ Inability to handle grammars with left recursion is annoying
▶ 1 token of lookahead isn’t sufficient for some grammars
▶ For example, in our original grammar, we had productions A → i = A

and A → E
▶ FIRST+ sets of both productions will contain i , so they would conflict

in the LL(1) parse table
▶ A recursive descent parser could just look ahead by 2 tokens
▶ LL(k) parsing is a generalization of LL(1) to allow greater lookahead


