
Lecture 6: Interpreter runtime structures 2

David Hovemeyer

September 16, 2024

601.428/628 Compilers and Interpreters



Outline

▶ Closures
▶ Garbage collection
▶ Bytecode interpreters
▶ Thoughts on interpreter implementation



Closures



Closures

Many languages support closures, a.k.a. anonymous functions, lambdas

Basic idea: the closure retains a pointer to its parent environment, i.e., the
environment in which it was created at runtime
▶ This may imply that the lifetime of the parent environment is extended to

be at least as long as the lifetime of the closure



Closure example

function mkaddn(n) {
function(x) { x + n; };

}

var add1;
var add2;
add1 = mkaddn(1);
add2 = mkaddn(2);

println(add1(1));
println(add2(1));



Closure example

function mkaddn(n) {
function(x) { x + n; };

}

var add1;
var add2;
add1 = mkaddn(1);
add2 = mkaddn(2);

println(add1(1)); -- prints 2
println(add2(1));



Closure example

function mkaddn(n) {
function(x) { x + n; };

}

var add1;
var add2;
add1 = mkaddn(1);
add2 = mkaddn(2);

println(add1(1));
println(add2(1)); -- prints 3



Closure environments



Closure environments



Closure environments



Closure environments



Closure environments



Closure environments



Closure environments



Closure environments



Closure environments



Closure environments



Closure environments



Closure environments



Closure environments



Closure environments



Implementing closures

A few possible implementation techniques:
▶ Dynamically-allocate function call environments
▶ Closure values retain a pointer to parent environment
▶ Could use reference counting to know when to delete

dynamically-created environments
▶ Environment is destroyed when there are no remaining references to it

▶ Closure retains a copy of its parent environment (and grandparent, etc.)
▶ Or, copies of just the variables that are actually referenced by the body

of the closure function



Garbage collection



Dynamically allocated values

▶ We noted last time that runtime values may require dynamically-allocated
storage
▶ Strings, vectors, list nodes, objects, etc.

▶ How to ensure that dynamically allocated memory gets reclaimed when no
longer used?

▶ A couple standard approaches:
▶ Reference counting
▶ Garbage collection



Reference counting

▶ All dynamically allocated objects have a reference count field
▶ Is just an integer indicating how many pointers are pointing to the

object
▶ Language runtime must take care to increment and decrement references

counts
▶ C++ smart pointers can help a lot with this
▶ Value class in Assignments 1&2 has this role

▶ When reference count reaches 0, deallocate
▶ Problem: object graphs with cycles can’t be reclaimed



Reclaiming cyclical structures

How to address this problem?
▶ Do nothing and don’t worry about it
▶ Periodically run a garbage collection algorithm (which generally have no

trouble reclaiming cyclical garbage)
▶ Support weak references (which don’t increment the pointed-to object’s

reference count)
▶ Example: in a tree where children keep a pointer to their parent, make

it a weak reference
▶ One challenge is to invalidate the weak reference when the object’s

reference count reaches 0



Garbage collection

▶ Language runtime keeps track of references to dynamic objects
▶ Periodically, it determines which objects are reachable
▶ Unreachable objects are reclaimed

▶ There are many ways to do this! (Tons of research, we could do an entire
course on this topic)
▶ We’ll briefly discuss two



Root set

▶ The root set of references are the starting point for determining which
objects are reachable

▶ It consists of:
▶ Objects referenced by global variables
▶ Objects referenced by the activation records (i.e., function call

environments) of currently-executing functions (on the call stack)
▶ Objects not directly or indirectly reachable from the root set can be

assumed to be garbage



Assumptions

▶ The garbage collector can find all of the dynamically allocated objects
▶ Given a pointer to an object, the garbage collector knows what pointers

to other objects are stored in it



Mark and sweep

▶ Starting from the root set, do a graph traversal to find all reachable
objects, and mark them as “live”

▶ Traverse all dynamically allocated objects, and reclaim the memory of
those not marked as alive
▶ Also, clear the “live”‘ mark on objects that are still alive



Copying

▶ Heap is divided into semispaces
▶ New objects are allocated in the current semispace
▶ To collect garbage:
▶ Starting from the root set, do a graph traversal of reachable objects
▶ For each live object, copy it into the other semispace (keeping track of

mapping from old location to new location)
▶ Once all objects are copied, update all pointers in root set and live

objects to reflect the updated object locations
▶ Switch semispaces



Bytecode interpreters



Pros and cons of AST-based interpreters

▶ Assignments 1 and 2 involve implementing an AST-based interpreter
▶ The AST is the program representation used to execute the source

program
▶ Advantages of AST-based interpreters:
▶ Easy to implement

▶ Disadvantages of AST-based interpreters:
▶ Slow
▶ Poor cache locality



Bytecode interpreters

▶ Another common approach is to implement a bytecode interpreter
▶ Functions are translated into bytecode
▶ Essentially a machine language for a software-defined CPU

▶ Requires compilation of source to bytecode instructions (per-function)
▶ Bytecode instructions can correspond closely to constructs in AST
▶ So, this compilation process can be relatively straightforward



A bytecode language

Concepts:
▶ A function is encoded as a sequence of bytes
▶ A function has a string pool containing literal string values needed by

instructions
▶ Each instruction starts with an opcode byte
▶ The opcode byte may followed by additional bytes to encode additional

information about the instruction:
▶ Literal integer (N)
▶ Local variable number (Lnum)
▶ Index of a string in the string pool (Sidx)
▶ Index of an instruction within the function (for branches) (InsIdx)



Stack-based vs. register-based bytecodes

▶ An important concern in a bytecode language is how to store and refer to
temporary values

▶ E.g., before an operator is applied to its operands, they must be
evaluated, and their values stored somewhere

▶ Two main approaches:
▶ Stack-based: temporary values are pushed onto an operand stack
▶ Register-based: temporary values are stored in “registers”

▶ These slides will present a very simple stack-based bytecode language
▶ Modeled on Java bytecode



Instruction set

iconst N Push integer constant N onto operand stack
strconst Sidx Push string constant onto operand stack
ret Return from function
add Pop right operand, pop left operand, compute and push sum
sub Pop right operand, pop left operand, compute and push difference
mul Pop right operand, pop left operand, compute and push product
div Pop right operand, pop left operand, compute and push quotient
pop Remove top operand from stack
dup Push duplicate of top operand
getvar Sidx Get named variable (from outer environment), push on stack
setvar Sidx Pop value from stack, store in named variable (from outer environment)
ldlocal Lnum Get local variable, push its value on stack
stlocal Lnum Pop value from stack, store in local variable
cmplt Pop right operand, pop left operand, push boolean lhs<rhs
cmplte Pop right operand, pop left operand, push boolean lhs<=rhs
cmpgt Pop right operand, pop left operand, push boolean lhs>rhs
cmpgte Pop right operand, pop left operand, push boolean lhs>=rhs
cmpeq Pop right operand, pop left operand, push boolean lhs==rhs
cmpneq Pop right operand, pop left operand, push boolean lhs!=rhs
jmpt InsIdx Pop boolean, jump to target instruction if true
jmpf InsIdx Pop boolean, jump to target instruction if false
jmp InsIdx Unconditional branch to target instruction
call Sidx Call function named by string constant



Local variables

▶ The bytecode interpreter defines local variables to serve as storage for
parameters and local variables within the function body

▶ Local variables are numbered starting from 0
▶ Local variable 0 is the first parameter

▶ By analyzing variable declarations in the function AST, the bytecode
compiler can assign each local variable in the body of the function to a
local variable number
▶ Local variables with non-overlapping lifetimes can use the same local

variable number



Bytecode compilation

▶ Code generation for a stack-based instruction set is incredibly simple
▶ Basic idea: code generated to evaluate an expression pushes the result

value onto the stack
▶ Evaluating a binary operator: recursively generate code for left and right

subexpressions (pushing their values onto the stack), then emit a
computation instruction (add, sub, etc.) which will pop the operands,
then push the result of the computation

▶ This strategy works for arbitrarily-complicated expressions!



Evaluating 1 + 2

iconst 1
iconst 2
add



Evaluating 3 + (4 * 5)

iconst 3
iconst 4
iconst 5
mul
add



Observation

Generating stack-based bytecode instructions is essentially the same idea as
translating expressions into postfix form, where each operator follows its
operands



Statement lists

To evaluate a sequence of statements:
▶ Generate code for the statement
▶ If the statement was not the last statement in the sequence, emit a pop

instruction

The result of evaluating the last statement is left on the stack



Code generation

Helper functions for code generation:
▶ emit appends a byte to the bytecode
▶ emit_i16 appends a 16 bit integer (as two bytes)
▶ emit_i32 appends a 32 bit integer
▶ intern returns the index in the string pool of a specified string value,

adding it to the pool if it is not present already
▶ set_i16 modify a 16 bit integer at specified offset in the bytecode

(helpful for resolving branch targets)



Code generation function

void BytecodeCompiler::gen_code(Node *ast, Value env) {
int ast_tag = ast->get_tag();
switch (ast_tag) {

...lots of cases...
}

}

Note that env is an Environment representing the current scope, wrapped in
a Value. Its job is to keep track of which local variables exist, and which local
variable number each one has.



Generating code for an integer literal

case AST_INT_LITERAL:
emit(OP_ICONST, ast->get_loc());
emit_i32(std::stoi(ast->get_str()));
break;

The integer literal’s lexeme is converted to an integer value and encoded into
the iconst instruction.



Generating code for a variable reference

case AST_VARREF:
{

Environment::Binding var_binding = env.get_env()->find(ast->get_str());
if (var_binding.is_valid()) {

int varnum = var_binding.get_value().get_ival();
emit(OP_LDLOCAL, ast->get_loc());
emit_i16(varnum);

} else {
emit(OP_GETVAR, ast->get_loc());
emit_i16(intern(ast->get_str(), ast->get_loc()));

}
}
break;

Local variables emit an ldlocal instruction, variables outside the scope of the
function emit getvar instruction (which handles the case where a variable in
a scope enclosing the function is accessed.)



Generating code for binary expressions

case AST_ADD:
case AST_SUB:
case AST_MULTIPLY:
case AST_DIVIDE:
case AST_LT:
case AST_LTE:
case AST_GT:
case AST_GTE:
case AST_EQ:
case AST_NEQ:

gen_code(ast->get_kid(0), env);
gen_code(ast->get_kid(1), env);
emit(binop(ast_tag), ast->get_loc());
break;

The binop function maps an AST tag (of a binary operator) to the
corresponding bytecode instruction.



Generating code for a variable definition

case AST_VARDEF:
{

Environment::Binding localvar_binding =
env.get_env()->create(ast->get_kid(0)->get_str());

localvar_binding.set_value(Value(m_cur_num_locals));
m_cur_num_locals++;
if (m_cur_num_locals > m_max_num_locals)

m_max_num_locals = m_cur_num_locals;
// push dummy evaluation result
emit(OP_ICONST, ast->get_loc());
emit_i32(0);

}
break;

The next unused local variable number is assigned for the new local variable.
(Note that every statement must push one value, hence the iconst 0.)



Statement list (block)

case AST_STATEMENT_LIST:
{

Value block_env(new Environment(env));
for (auto i = ast->cbegin(); i != ast->cend(); ++i) {

if (i != ast->cbegin())
emit(OP_POP);

gen_code(*i, block_env);
}
// any local variables defined in this block are
// now no longer needed
m_cur_num_locals -= block_env.get_env()->get_size();

}
break;

Each statement list (block) gets a nested Environment so that it may define
local variables. These variables cease to exist when control exits the block.



If/else statement
case AST_IF_ELSE:

{
gen_code(ast->get_kid(0), env); // gen code for condition
emit(OP_JMPF);
unsigned pc_target_iffalse = m_bytecode.size();
emit_i16(0);
gen_code(ast->get_kid(1), env); // if true part
emit(OP_POP);
emit(OP_JMP);
unsigned pc_target_done = m_bytecode.size();
emit_i16(0);
set_i16(pc_target_iffalse, m_bytecode.size());
gen_code(ast->get_kid(2), env); // if false part
emit(OP_POP);
set_i16(pc_target_done, m_bytecode.size());
emit(OP_ICONST); // done, push dummy value
emit_i32(0);

}
break;

The main complication is that the byte index of a control target isn’t known
until after the point where the branch instruction is emitted. (So, generate a
dummy index and then fix it later.)



While loop

This is left as an exercise for the reader ,

A while loop is like an if statement that repeats, so not too hard to implement.



Function calls
case AST_FNCALL:

{
// evaluate argument expressions
Node *arglist = ast->get_kid(1);
for (auto i = arglist->cbegin(); i != arglist->cend(); ++i) {

gen_code(*i, env);
}
// generate code to evaluate function
gen_code(ast->get_kid(0), env);
// emit call instruction
emit(OP_CALL, ast->get_loc());
emit_i16(int16_t(arglist->get_num_kids()));

}
break;

Fairly straightforward: generate code to evaluate and push arguments, then
generate code to look up and push the function value. The call will clear
argument and function values, then push the function’s result.



Example bytecode translation
function add(x, y) {

x + y;
}

Function 'add'
Parameters: x, y
Code:

0 ldlocal 0
3 ldlocal 1
6 add
7 ret



Example bytecode translation
function fib(n) {

var result;
if (n < 2) {

result = n;
} else {

result = fibhelp(0, 1, n - 1);
}
result;

}

Function 'fib'
Parameters: n
Code:

0 iconst 0
5 pop
6 ldlocal 0
9 iconst 2

14 cmplt
15 jmpf 29
18 ldlocal 0
21 dup
22 stlocal 1
25 pop
26 jmp 59
29 iconst 0
34 iconst 1
39 ldlocal 0
42 iconst 1
47 sub
48 getvar fibhelp
51 call 3
54 dup
55 stlocal 1
58 pop

59 iconst 0
64 pop
65 ldlocal 1
68 ret



Example bytecode translation
function fibhelp(a, b, n) {

var result;
if (n == 0) {

result = b;
} else {

result = fibhelp(b, a + b, n - 1);
}
result;

}

Function 'fibhelp'
Parameters: a, b, n
Code:

0 iconst 0
5 pop
6 ldlocal 2
9 iconst 0

14 cmpeq
15 jmpf 29
18 ldlocal 1
21 dup
22 stlocal 3
25 pop
26 jmp 59
29 ldlocal 1
32 ldlocal 0
35 ldlocal 1
38 add
39 ldlocal 2
42 iconst 1
47 sub
48 getvar fibhelp
51 call 3
54 dup

55 stlocal 3
58 pop
59 iconst 0
64 pop
65 ldlocal 3
68 ret



Bytecode execution
Value Interpreter::execute_bytecode(Value fn_val, Value env) {

BytecodeFunction *func = fn_val.get_bytecode_function();
const std::vector<uint8_t> &bytecode = func->get_bytecode();
const std::vector<std::string> &strpool = func->get_strpool();

std::vector<Value> locals(func->get_num_locals());
// ...copy argument values to locals...

std::vector<Value> stack;
unsigned pc = 0; // "Program Counter"
unsigned op_pc; // PC value of current opcode
int32_t lhs, rhs;
int16_t off;
bool done = false;

// ...bytecode execution loop...

return stack.back(); // result is on top of stack
}



Executing bytecode instructions

while (!done) {
op_pc = pc++;
uint8_t opcode = bytecode[op_pc];

switch (opcode) {
...lots of cases...

}
}



Integer and string literals

case OP_ICONST:
pc = decode_i32(bytecode, pc, lhs);
stack.push_back(Value(lhs));
break;

case OP_STRCONST:
pc = decode_i16(bytecode, pc, off);
assert(off >= 0);
stack.push_back(Value(new String(strpool[off])));
break;



Binary operators

#define EXECUTE_BINOP(op) \
do { \

check_binop_operands(op_pc, stack, func); \
rhs = stack.back().get_ival(); \
stack.pop_back(); \
lhs = stack.back().get_ival(); \
stack.pop_back(); \
stack.push_back(Value(lhs op rhs)); \

} while (0)



Binary operators

case OP_ADD:
EXECUTE_BINOP(+);
break;

case OP_SUB:
EXECUTE_BINOP(-);
break;

case OP_MUL:
EXECUTE_BINOP(*);
break;



Handling function calls, closures

▶ Handling function calls:
▶ Could have the interpreter make a recursive call to execute_bytecode

(easiest option)
▶ Could build support for function calls/returns into the bytecode

interpreter (more difficult, but likely better performance this way)
▶ Closures:
▶ In bytecode loop shown above, locals are a vector in the stack frame

of execute_bytecode
▶ If a closure is created, how to allow local variables to become part of

the closure environment?



Thoughts on interpreter implementation



Some general advice

▶ Get the parser working first
▶ Visualize your tree
▶ Use assertions
▶ Testing: start with the simplest possible tests, then increase complexity

incrementally
▶ gdb


	Closures
	Garbage collection
	Bytecode interpreters
	Thoughts on interpreter implementation

