
Lecture 4: ASTs, Interpreters

David Hovemeyer

September 9, 2024

601.428/628 Compilers and Interpreters

Today

▶ ASTs, how to create them
▶ Building an interpreter on top of an AST
▶ Evaluating expressions
▶ Functions

ASTs

Abstract Syntax Tree (AST)

▶ An AST is a simplified form of a parse tree
▶ Unnecessary information is omitted
▶ Structure is simplified

▶ How do we create an AST? Options:
▶ Transform the parse tree
▶ Have the parser build AST directly

▶ Example code: https://github.com/daveho/astdemo

https://github.com/daveho/astdemo

Expression grammar

Infix expression grammar with left recursion eliminated (n means “number”, i
means “identifier”):

E → T E’
E’ → + T E’
E’ → - T E’
E’ → ϵ
T → F T’
T’ → * F T’
T’ → / F T’
T’ → ϵ
F → n
F → i
F → (E)

AST node types
AST node types should reflect the operations that the input program performs

For the expression grammar:
enum ASTKind {

AST_ADD,
AST_SUB,
AST_MULTIPLY,
AST_DIVIDE,
AST_VARREF,
AST_INT_LITERAL,

};

These reflect:
▶ How values are produced (variable references, literal values)
▶ How values are computed from existing values (add, sub, multiply, divide)

Option 1 (transform the parse tree)

Basic idea: write a function
Node *buildast(Node *t);

When passed a pointer to the root of some part of the parse tree, it returns a
pointer to the root of an equivalent AST

Main issue for the expression grammar: we need left associativity for additive
and multiplicative operators
▶ E.g., a - b - c means (a - b) - c
▶ The transformation from left recursion to right recursion makes the parse

trees for left associative operators grow the wrong way

Parse tree to AST transformation

Node *buildast(Node *t) {
int tag = t->get_tag();
switch (tag) {

...cases for various kinds of parse nodes...

default:
RuntimeError::raise("Unknown parse node type %d", tag);

}
}

Easy cases

Identifiers and integer literals become AST_VARREF and AST_INT_LITERAL
nodes:

case TOK_IDENTIFIER: // variable reference
return new Node(AST_VARREF, t->get_str());

case TOK_INTEGER_LITERAL: // integer literal
return new Node(AST_INT_LITERAL, t->get_str());

These are the base cases of the recursion

Primary expressions

Primary expressions are occurrences of the F nonterminal, productions:

F → n
F → i
F → (E)

Recursively build AST from n (integer literal), i (identifier), or E (arbitrary
expression) child:

case NODE_F: // parenthesized expression, identifier, or integer literal
return buildast(t->get_kid(t->get_num_kids() == 3 ? 1 : 0));

Interesting cases

Occurrences of E and T nonterminals are expressions involving left associative
(additive and multiplicative) operators. We need to fix the structure of the
tree:

case NODE_E:
case NODE_T: // restructure for left associativity

return buildast_left(buildast(t->get_kid(0)), t->get_kid(1));

Productions are:

E → T E’
T → F T’

Start by building an AST for T or F occurrence, then continue recursively if
the expression continues at the same precedence level

Fixing associativity

Productions for continuations of additive and multiplicative expressions:

E’ → + T E’
E’ → - T E’
E’ → ϵ
T’ → * F T’
T’ → / F T’
T’ → ϵ

Epsilon production means the expression is finished

Otherwise, form will be an operator (+, -, *, or /), followed by an operand (T
or F), followed by a recursive continuation

Fixing associativity
Node *buildast_left(Node *ast, Node *right) {

if (right->get_num_kids() == 0) { // done with expression?
return ast;

}

// first child of right parse tree is the operator
Node *op = right->get_kid(0);
int op_tag = op->get_tag();

// second child is an operand (T or F), convert it to AST
Node *operand_ast = buildast(right->get_kid(1));

// join current expression AST with new operand
int ast_tag = buildast_operator_tag(op_tag);
ast = new Node(ast_tag, {ast, operand_ast});

// continue recursively
return buildast_left(ast, right->get_kid(2));

}

Example parse tree

$ echo "a - b - c*3" | ./astdemo -p
E
+--T
| +--F
| | +--IDENTIFIER[a]
| +--T'
+--E'

+--MINUS[-]
+--T
| +--F
| | +--IDENTIFIER[b]
| +--T'
+--E'

+--MINUS[-]
+--T
| +--F
| | +--IDENTIFIER[c]
| +--T'
| +--TIMES[*]
| +--F
| | +--INTEGER_LITERAL[3]
| +--T'
+--E'

Note how in expansion of E/E’,
subtrees grow to the right

Example AST

$ echo "a - b - c*3" | ./astdemo -b
SUB
+--SUB
| +--VARREF[a]
| +--VARREF[b]
+--MULTIPLY

+--VARREF[c]
+--INT_LITERAL[3]

In AST, the - (SUB) operator
now associates to the left

Option 2 (have parser build AST)

We could avoid the need for a separate AST-building step by having the parser
construct an AST directly:
▶ Omit unnecessary nodes
▶ Restructure tree as required

Primary expressions

Node *Parser2::parse_F() {
Node *next_tok = m_lexer->lexer_peek();
if (!next_tok) { error }

int tag = next_tok->get_tag();
if (tag == TOK_INTEGER_LITERAL || tag == TOK_IDENTIFIER) {

std::unique_ptr<Node> tok(expect(static_cast<enum TokenKind>(tag)));
tok->set_tag(tag == TOK_INTEGER_LITERAL ? AST_INT_LITERAL : AST_VARREF);
return tok.release();

} else if (tag == TOK_LPAREN) {
expect_and_discard(TOK_LPAREN);
std::unique_ptr<Node> ast(parse_E());
expect_and_discard(TOK_RPAREN);
return ast.release();

} else { error }
}

Handling of identifiers
and integer literals is
straightforward

Primary expressions

Node *Parser2::parse_F() {
Node *next_tok = m_lexer->lexer_peek();
if (!next_tok) { error }

int tag = next_tok->get_tag();
if (tag == TOK_INTEGER_LITERAL || tag == TOK_IDENTIFIER) {

std::unique_ptr<Node> tok(expect(static_cast<enum TokenKind>(tag)));
tok->set_tag(tag == TOK_INTEGER_LITERAL ? AST_INT_LITERAL : AST_VARREF);
return tok.release();

} else if (tag == TOK_LPAREN) {
expect_and_discard(TOK_LPAREN);
std::unique_ptr<Node> ast(parse_E());
expect_and_discard(TOK_RPAREN);
return ast.release();

} else { error }
}

Parentheses omitted from
AST for parenthesized
subexpression

Additive expressions

Production E → T E’

Idea is to parse and build an AST for one term, then handle possible
continuation recursively, building up a left-associative AST
▶ Multiplicative expressions (T → F T’) are handled similarly

Node *Parser2::parse_E() {
Node *ast = parse_T();
return parse_EPrime(ast);

}

Additive expressions

As additive operators and terms are parsed, build left-leaning AST
Node *Parser2::parse_EPrime(Node *ast_) {

std::unique_ptr<Node> ast(ast_);
Node *next_tok = m_lexer->peek();
if (next_tok) {

int next_tag = next_tok->get_tag();
if (next_tag == TOK_PLUS || next_tag == TOK_MINUS) {

std::unique_ptr<Node> op(expect(static_cast<enum TokenKind>(next_tag)));
Node *term_ast = parse_T();
ast.reset(new Node(next_tok_tag == TOK_PLUS ? AST_ADD : AST_SUB,

{ast.release(), term_ast}));
ast->set_loc(op->get_loc());
return parse_EPrime(ast.release());

}
}
return ast.release();

}

parse_TPrime is very
similar

Example AST

$ echo "a - b - c*3" | ./astdemo -2
SUB
+--SUB
| +--VARREF[a]
| +--VARREF[b]
+--MULTIPLY

+--VARREF[c]
+--INT_LITERAL[3]

Which approach to use?

Build AST from parse tree:
▶ Full represented of source is maintained
▶ Arguably cleaner from a modularity standpoint
▶ Disadvantages: slower, uses more memory, more code

Build AST directly in parser:
▶ Avoid keeping unnecessary information in memory
▶ Likely more efficient, also requires less code overall
▶ Disadvantage: parser is harder to understand?

Additional thoughts on construction

Other parsing techniques make AST construction in the parser easier:
▶ Precedence climbing: essentially produces ASTs for infix expressions

“natively”
▶ Bottom-up parsers that can handle left recursion: avoid the need for tree

restructuring

So, building an AST directly from the parser is more straightforward in these
cases

Mapping AST nodes to source code

Since the AST will be the starting point for interpretation and/or translation,
we’ll need to know how AST constructs correspond to source constructs

Basic idea: copy source information produced by lexical analyzer to AST
▶ Lexer should annotate tokens with this information

Building an interpreter

AST-based interpreters

An AST is an ideal data structure to use as the intermediate representation
for an interpreter

▶ AST(s) represent the program
▶ Evaluating AST(s) executes the program

Values

We will need a data type to represent runtime values:
▶ values of integer literals
▶ values loaded from variables
▶ values stored in variables
▶ results of computations (e.g., operators in expressions)

Typical approach: tagged variant
▶ Each runtime value is tagged with its data type
▶ This approach works well for dynamically typed languages

Example value type

enum ValueKind {
VAL_INT,
VAL_FLOAT,
VAL_STRING,
// etc.

};

struct Value {
enum ValueKind kind;
long ival; // used for VAL_INT
double fval; // used for VAL_FLOAT
char *strval; // used for VAL_STRING
// etc.

};

Tagged unions

Since only one value field at a time will be used, we can use a union to save
memory:

struct Value {
enum ValueKind kind;
union {

long ival; // used for VAL_INT
double fval; // used for VAL_FLOAT
char *strval; // used for VAL_STRING
// etc.

};
};

Storage for all value fields is collapsed
▶ This is safe as long as code checks kind field before accessing a value field

Are values accessed by value or by reference?

If a runtime value representation (e.g., struct Value type) stores only small,
fixed-sized data values (fixed-precision integer or floating point, etc.), then it
can be used by value within the interpreter

But, we may want to represent values requiring arbitrary storage to represent!
(Strings, arrays, objects, etc.)

This means that runtime values may need to be (at least partially) accessed by
reference/pointer

Key issue: how to ensure that memory is reclaimed when no longer used?
▶ More on this next time...

Evaluating expressions

The core of any programming language is expressions which compute values

Typical approach to representing expressions using ASTs:
▶ Parent nodes are operations
▶ Child nodes are operands
▶ Leaf nodes are primary expressions (literals, variable references)

Expression evaluation (pseudo code)

evaluate(astnode)
if astnode is literal

return literal value encoded by astnode
else if astnode is variable reference

return result of looking up value of variable
else if astnode is variable assignment

childval ← evaluate(astnode.children[0])
update value of variable
return childval

else if astnode is unary operation
childval ← evaluate(astnode.children[0])
return result of applying operator to childval

else if astnode is binary operation
leftval ← evaluate(astnode.children[0])
rightval ← evaluate(astnode.children[1])
return result of applying operator to leftval and rightval

Functions

Functions

Functions (a.k.a. procedures, subprograms) are the most fundamental
abstraction mechanism in computing

How to support them?

▶ Syntax
▶ Semantics

Syntax: function definition

Main issues in function syntax:
▶ Function name
▶ Parameters
▶ Function body

Example grammar production (italic means nonterminal, bold means
terminal):

funcdef → function identifier (opt-parameter-list) { statement-list }

Using a keyword (e.g., function) to designate a function definition makes the
parser’s job easier

Syntax: function call

A function call can be considered as a primary expression
▶ Along with other kinds of primary expressions, such as literals, variable

references

Example grammar production (italic means nonterminal, bold means
terminal):

primary → identifier (opt-expression-list)

In general, this can be parsed easily by both top-down and bottom-up parsers
▶ If an identifier is immediately followed by a left parenthesis, it’s a function

call, not a variable reference

Function semantics

Evaluating a function call

function add(x, y) {
x + y;

}

a = add(2+1, 3*4);

Value assigned to a should be 15
▶ Why?

Evaluating a function call

Steps:
1. Evaluate arguments
2. Create a new environment for the function parameters
3. Assign computed argument values to the function parameters in the new

environment
4. Evaluate the function body in the new environment
5. Result of evaluating function body becomes the value computed by the

function call expression

Function call evaluation example

Evaluating a function call

function add(x, y) {

x + y;

}

a = add(2+1, 3*4);

Function call evaluation example

Evaluating a function call

function add(x, y) {

x + y;

}

a = add(2+1, 3*4); evaluate arguments: 3, 12

Function call evaluation example

Evaluating a function call

function add(x, y) { x=3, y=12

x + y;

}

a = add(2+1, 3*4);

Function call evaluation example

Evaluating a function call

function add(x, y) {

x + y; evaluates to 15

}

a = add(2+1, 3*4);

Function call evaluation example

Evaluating a function call

function add(x, y) {

x + y;

}

a = add(2+1, 3*4); call evaluates to 15

Function call evaluation example

Evaluating a function call

function add(x, y) {

x + y;

}

a = add(2+1, 3*4); assign 15 to a

Making this work

Next time:
▶ Representing environments
▶ Variables and scopes
▶ Representing functions
▶ Runtime data structures, garbage collection

	ASTs
	Building an interpreter
	Functions

