
Exam 3
601.428/628 Compilers and Interpreters

December 16, 2022

Complete all questions.

Time: 120 minutes.

I affirm that I have completed this exam without unauthorized assistance
from any person, materials, or device.

Signed:

Print name:

Date:

Reference
Reference for high-level instructions (operand size suffixes denoted x, y are b=8 bits, w=16
bits, l=32 bits, q=64 bits, comparisons denoted T are lt=less than, lte=less than or equal,
gt=greater than, gte=greater than or equal, eq=equality, neq=inequality):

Instruction Meaning

mov_x Vrd, Op Copy value of Op into Vrd
mov_x (Vrs), Op Copy value of Op into memory location pointed to by Vrs
add_x Vrd, Op, Op Store sum of operands in Vrd
sub_x Vrd, Op, Op Store difference of operands (left - right) in Vrd
mul_x Vrd, Op, Op Store product of operands in Vrd
div_x Vrd, Op, Op Store result of dividing operands (left / right) in Vrd
sconv_xy Vrd, Vrs Sign-extend value of Vrs, store in Vrd (size conversion from x to y)
localaddr Vrd, $N Store pointer to local memory at offset $N in Vrd
cmpT_x Vrd, Op, Op Compare left and right operands, place boolean result in Vrd
cjmp_t Vrs, label Conditional jump to label if Vrs contains a true value
cjmp_f Vrs, label Conditional jump to label if Vrs contains a false value
call label Call function named by label
ret Return from instruction
enter $N Create stack frame with specified amount of local storage
leave $N Tear down stack frame with specified amount of local storage
spill Vrs/Mr, $N Spill value of Vrs to spill location $N
restore Vrd/Mr, $N Restore Vrd from spill location $N

• Virtual registers are vr0, vr1, etc.
• vr0 is return value, vr1 through vr6 are arguments
• Vrd means a destination virtual register (modified by the instruction)
• Vrs means a source virtual register (not modified by the instruction)
• Parentheses surrounding a virtual register means a memory reference using the

virtual register as a pointer (e.g., (vr12))
• $N means an integer constant (e.g, $42)
• Op means a source operand (source virtual register not modified, integer constant,

or memory reference)
• label means a target label
• Mr means a machine register (assigned as part of local register allocation)

Question 1. [25 points] Consider the following basic block of high-level instructions:

add_l vr20, vr12, vr13

sub_l vr21, vr12, vr13

add_l vr22, vr13, vr12

sub_l vr23, vr13, vr12

mov_l vr12, $42

add_l vr24, vr12, vr13

mov_l vr25, (vr17)

mov_l vr26, (vr18)

add_l vr28, vr25, vr26

mov_l (vr19), vr28

mov_l vr29, (vr17)

add_l vr30, vr29, vr26

Annotate each reference to a virtual register with a value number representing its runtime
value immediately after the instruction executes. If two values are guaranteed to be the
same at runtime, they should be assigned the same value number.

Note that in the case of a memory reference operand (e.g., (vr17)), you are specifying
the value number of the virtual register, not the memory operand. However, in the case
where a value is loaded from memory into a virtual register, the destination virtual register
should be annotated with a value number representing the value loaded from memory.

Question 2. [25 points] Consider the following basic block of high-level instructions:

localaddr vr16, $1600

mul_l vr17, vr11, vr10

add_l vr18, vr17, vr12

sconv_lq vr19, vr18

mul_q vr20, vr19, $8

add_q vr21, vr16, vr20

mov_q vr22, (vr21)

localaddr vr23, $800

mul_l vr24, vr13, vr10

add_l vr25, vr24, vr12

sconv_lq vr26, vr25

mul_q vr27, vr26, $8

add_q vr28, vr23, vr27

mov_q vr30, (vr28)

mul_q vr29, vr14, vr30

add_q vr31, vr22, vr29

mov_q (vr21), vr31

add_l vr39, vr12, $1

mov_l vr12, vr39

[Question continues on next page.]

[Continuation of Question 2.]

(a) Which virtual registers are definitely live at the beginning of the basic block? Ignore
the possibility that there are virtual registers live at the end of the block that are still live at
the beginning, so focus only on “upward exposed” virtual registers. (Note that Question 4
has a description of liveness.)

(b) Assume that vr10 through vr14 are live at the end of the basic block. Assume that
machine registers called A, B, and C are available for local register allocation. Annotate the
code on the previous page to indicate, for each instruction, an assignment of a machine
register for each virtual register that is eligible for register allocation. (Hint: virtual
registers live at the beginning and/or end of the basic block are not eligible.) You should
use bottom-up register allocation. If any spills or restores are required, indicate where
they occur as well as the virtual register, machine register, and spill location. For example,

spill vr27/A, $1

would spill vr27 to spill location 1, reclaiming machine register A, and

restore vr27/B, $1

would restore the previously spilled value of vr27 from spill location 1, loading the value
into machine register B.

Suggestion: it will be helpful to make a note of which machine registers are available
and in-use at each point in the sequence. Also, don’t forget that when a virtual register
becomes dead (has no subsequent uses), its assigned machine register can be reclaimed.

Question 3. [20 points] Consider the high-level code for a function called bubble:

.globl bubble
bubble:

enter $0
mov_q vr10, vr1
mov_l vr11, vr2
mov_l vr12, $1
jmp .L1

.L0:
sconv_lq vr14, vr12
mul_q vr15, vr14, $4
add_q vr16, vr10, vr15
sub_l vr18, vr12, $1
sconv_lq vr19, vr18
mul_q vr20, vr19, $4
add_q vr21, vr10, vr20
mov_l vr23, (vr16)
mov_l vr24, (vr21)
cmplt_l vr22, vr23, vr24
cjmp_f vr22, .L2
mov_q vr1, vr10
sub_l vr15, vr12, $1
mov_l vr2, vr15
mov_l vr3, vr12
call swap

.L2:
add_l vr17, vr12, $1
mov_l vr12, vr17

.L1:
cmplt_l vr18, vr12, vr11
cjmp_t vr18, .L0
leave $0
ret

On the next page, draw a control flow graph of the bubble function. Be sure to designate
which blocks are the entry and exit. Make sure all control-flow edges are clearly indicated
as arrows. Make sure the instructions in each block are clearly indicated. (You can label
sequences of instructions on this page and refer to those labels in the control-flow graph,
to avoid the need to copy all of the instructions.)

[Draw your control-flow graph for Question 3 on this page.]

Question 4. [20 points] Consider the following control-flow graph:

Recall that the dataflow equations for liveness are

LiveOut(𝑛) = ∅ (initially)
LiveOut(𝑛) = ∪𝑚∈Succ(𝑛)(UEVar(𝑚) ∪ (LiveOut(𝑚) − VarKill(𝑚)))

Succ(𝑛) is the set of control successors of block 𝑛. LiveOut(𝑛) is the set of virtual registers
which are live at the end of block 𝑛. UEVar(𝑛) is the set of “upward exposed” virtual
registers (those where there is a use not preceded by an assignment) in block 𝑛. VarKill(𝑛)
is the set of virtual registers assigned in block 𝑛.

[Continued on next page.]

[Continuation of Question 4.]

(a) Specify the UEVar and VarKill sets for each basic block A–G. (You may annotate this
on the control-flow graph if you wish.)

(b) Specify the LiveOut set for each basic blocks A–G and also the Entry block, as deter-
mined by iterating the dataflow equations until there are no changes. (You may annotate
this on the control-flow graph if you wish.)

(c) Were multiple iterations needed for any basic block(s)? If so, explain briefly.

Question 5. [10 points] Consider the following sequence of x86-64 instructions:

movq %rdx, %rsi
imulq $8, %rsi
movq %r9, %r8
addq %rsi, %r8
movq (%r8), %rcx

This sequence could potrentially be replaced by the following instruction:

movq (%r9,%rdx,8), %rcx

Note that the x86-64 indexed/scaled addressing mode, specified as an operand of the
form (𝐵,𝐼,𝑆), accesses a value in memory at the address 𝐵 + 𝐼 × 𝑆.

Under what circumstances would this replacement preserve the semantics of the program?
Explain briefly. Hint: think about the original sequence as being part of a larger function.
Also: keep in mind that in x86-64, the destination operand is the last operand.

[You can use this page for scratch work and/or answers.]

[You can use this page for scratch work and/or answers.]

