
Exam 3
601.428/628 Compilers and Interpreters

December 21, 2021

Complete all questions.

Closed book, no use of electronic resources is permitted.

You may use two sheets of hand-written notes.

Time: 90 minutes.

I affirm that I have completed this exam without unauthorized assistance
from any person, materials, or device.

Signed:

Print name:

Date:

Reference

Reference for high-level instructions:

Instruction Meaning

ldci Vrd, $N Store integer constant $N to Vrd
addi Vrd, Op, Op Store sum of operands to Vrd
subi Vrd, Op, Op Store difference of operands (left - right) to Vrd
muli Vrd, Op, Op Store product of operands to Vrd
divi Vrd, Op, Op Store result of dividing operands (left / right) to Vrd
modi Vrd, Op, Op Store remainder after dividing operands (left / right) to Vrd
negi Vrd, Op Store negation of operand to Vrd
localaddr Vrd, $N Store address of memory location at offset of $N bytes

into local memory storage area to Vrd
ldi Vrd, (Vra) Store value loaded from memory location (Vra) to Vrd
sti (Vra), Vrb Store value in Vrb to memory location (Vra)
readi Vrd Read integer input value and store it to Vrd
writei Vra Write integer value in Vra to output
jmp label Unconditional jump to label
cmpi Op, Op Compare operands
je label Conditional jump to label if in previous comparison, left = right
jne label Conditional jump to label if in previous comparison, left , right
jlt label Conditional jump to label if in previous comparison, left < right
jlte label Conditional jump to label if in previous comparison, left ≤ right
jgt label Conditional jump to label if in previous comparison, left > right
jgte label Conditional jump to label if in previous comparison, left ≥ right
mov Vrd, Vra Store value in Vra to Vrd

Notes:

• Virtual registers are vr0, vr1, etc.
• Vrd means a destination virtual register (modified by the instruction)
• Vra and Vrb are source virtual registers (not modified by the instruction)
• (Vra) and (Vrb) mean a memory reference using a virtual register as a pointer, e.g.,
(vr0)

• $N means an integer constant (e.g, $42)
• Op means a source operand (either source virtual register or integer constant)
• label means a target label
• All values are 64-bit signed integers

Question 1. [25 points] Consider the following high-level basic block:

1: localaddr vr13, $0

2: ldci vr14, $10

3: muli vr15, vr0, vr14

4: addi vr16, vr15, vr2

5: muli vr17, vr16, $8

6: addi vr18, vr13, vr17

7: ldi vr3, (vr18)

8: ldci vr19, $0

9: mov vr1, vr19

10: jmp .L16

Assume that vr0, vr1, vr2, and vr3 are live at the end of the basic block.

Show:

1. The virtual registers that are live at the beginning of the block

2. For each instruction in the block, which virtual registers are live at the point just after
the instruction

Recall that a virtual register is live it will be used at a later point, but there is not an
intervening def (assignment) of the virtual register.

Question 2. [25 points] Assume that the following code is a basic block:

ldci vr4, $3
ldci vr5, $2
muli vr6, vr4, vr5
addi vr7, vr0, vr6
writei vr7

Assume that vr4, vr5, vr6, or vr7 are temporaries, so they are all dead at the end of the
block.

(a) Rewrite this code so that all uses of virtual registers with known constant values are
replaced with the appropriate constant. For example, in an instruction mov vr8, vr9 ,
if vr9 is known to have the constant value 42, then you would rewrite the instruction as
mov vr8, $42 . Note that if a value is computed from constant operands, the computed
value should also be treated as a constant (constant folding.)

(b) Which instructions in the transformed code can be eliminated? Explain briefly.

Question 3. [20 points] Assume that a local register allocator has three machine registers
available, called A, B, and C. For each the following instructions, we want the local
register allocator to assign amachine register for each virtual register. The first instruction
is annotated to show that vr0 has been assigned machine register A.

Instruction Register assignments Spill and/or restore?

ldci vr0, $1 vr0→A

ldci vr1, $2

ldci vr2, $2

addi vr3, vr0, vr1

muli vr4, vr3, $8

addi vr5, vr4, vr2

Complete the table above by performing local register allocation. For each instruction
in the block, show a possible assignment of machine registers to the referenced virtual
registers. Use bottom-up allocation, so that when a spill is necessary, the live virtual
register whose next use is furthest in the future is selected as a victim.

Indicate where spills and restores are necessary. You can use the notation spill VR,MR
and restore VR,MR , where VR is the virtual register being spilled or restored, and MR is
the machine register assignment being removed by the spill or established by the restore.

Don’t forget to reclaim machine registers after the last use of the virtual register to which
the machine register is assigned.

Question 4. [20 points] Consider the
control-flow graph on the right, where
block 1 is the entry block and block 4
is the exit block, and the variables are a,
b, c, x, and y:

(a) At the point labeled A (end of block 1), which variables are guaranteed to be used
on some forward path? (I.e., which variables are guaranteed to be used at some point in
the future?)

(b) At the point labeled B (beginning of block 3), which variables are guaranteed to be
used on some forward path?

(c) Would a dataflow analysis to find guaranteed uses of variables be a forward analysis
or a backward analysis? Explain briefly.

(d) Would a dataflow analysis to find guaranteed uses of variables be a “may” analysis or
a “must” analysis? Explain briefly.

Question 5. [10 points] Local value numbering (LVN) is useful for detecting redundant
computations and replacing them with a use of a previously-computed value.

One potential obstacle to using LVN to eliminate redundant computations is that a storage
location (i.e., virtual register) containing a computed value might be overwritten. For
example, consider the following code:

1: addi vr4, vr5, $42
2: writei vr4
3: ldci vr4, $17
4: addi vr6, vr5, $42
5: writei vr6

At line 4, there is a recomputation of the sum vr5 + 42, which is a value thatwas previously
stored in vr4. However, because vr4was modified at line 3, it is not correct to replace the
instruction at line 4 with

mov vr6, vr4

or to replace the instruction at line 5 with

writei vr4

State whether you think this is a significant problem in practice. I.e., is it likely that
computed values will become unavailable by being overwritten, or could the compiler
guarantee that thiswill not happen? Hint: think about how code generation for expression
evaluation and address computation works. Briefly justify your answer.

[Extra page for answers and/or scratch work.]

