
Midterm Exam 1
601.428/628 Compilers and Interpreters

October 4, 2021

Complete all questions.

Time: 75 minutes.

I affirm that I have completed this exam without unauthorized assistance
from any person, materials, or device.

Signed:

Print name:

Date:

Question 1. [20 points] A language for doing computations on binary (base 2) values has
the following kinds of tokens:

• An identifier starts with one of the letters a, or b, which may be following by 0 or
more letters (a or b) or binary digits (0 or 1)

• A literal binary integer is a sequence of 1 or more occurrences of the binary digits 0
and 1

• Operators are +, -, *, and /

(a) Show regular expressions for generating identifier and literal binary integer tokens as
described above. Note that you may use character classes such as [a-b] and [0-1] in your
regular expressions.

identifier:

literal binary integer:

(b) Show two finite automata which recognize, respectively,
identifier and literal binary integer tokens. Make sure each
transition indicates a direction and is clearly labeled with an
input symbol, that the start state and final (accepting) state(s)
are clearly indicated using the notation shown on the right.

Start
state

Final
state

identifier:

literal binary integer:

Question 2. [20 points] Consider the following context-free grammar with nonterminal
symbols E L V (E is the start symbol) and terminal symbols () λ . a b :

E → (λ V . E)
E → (L)
E → V
L → E
L → E L
V → a
V → b

(a) Show a derivation for the input string (λ a . (b a))

Working string Production
E E →

(b) Show the parse tree for the derivation you found in part (a). Make sure that each
symbol is represented by exactly one node, and that connections from parent to child
nodes are indicated clearly.

Question 3. [10 points] Show the FIRST and FOLLOW sets for the E nonterminal symbol
in the context-free grammar in Question 2. Recall that

• the FIRST set of a nonterminal symbol is the set of terminal symbols that could
begin an expansion of the symbol, including � if the symbol could expand to an
empty string, and

• the FOLLOW set is the set of terminal symbols that could follow an expansion of
the symbol, including the special eof symbol if the expansion could occur at the end
of the derived string of terminal symbols

FIRST(E) =

FOLLOW(E) =

Question 4. [20 points] Show a pseudo-code implementation of a recursive descent parse
function for the E nonterminal in the context-free language from Question 2. Assume that
the lexical analyzer has

• a next operation to consume the next token (raising an exception if the end of input
has been reached)

• a peek operation which returns the next token without consuming it (returning a
null value if the ned of input has been reached)

• an expect operation which is passed a kind of token, calls next, and raises an excep-
tion if the returned token is not the expected kind of token

Your parse function doesn’t need to build a tree. It just needs to choose and apply a
production. For reference, the grammar productions are:

E → (λ V . E)
E → (L)
E → V

L → E
L → E L

V → a
V → b

parseE() {

Question 5. [15 points] Consider the following grammar for an infix expression language
where primitive operands are a, b, 1, 2, and 3, and the infix operators are +, -, *, and /:

E → E + T
E → E - T
E → T
T → T * F
T → T / F
T → F

F → a
F → b
F → 1
F → 2
F → 3

(a) Show how to add parenthesized expressions to this language. For example, input
strings such as a * (3 - b) should be allowed. Explain what productions would need to
be added or modified to the original grammar.

(b) Show how to add a unary minus (-) operator to the language. For example, input
strings such as 3 * - a should be allowed. Explain what productions would need to be
added or modified to the original grammar.

Question 6. [15 points] Consider the following program, which is written in the program-
ming language you are implementing in Assignment 2:

var a, b;

function f(a) {
a + b;

}

b = 2;
a = f(3);
println(a);

(a) Show the contents of the static environments for the global scope and the scope of the
f function. (You may assume that println is the only intrinsic function defined in the
global environment.) Make sure that within each environment, each symbol has a unique
integer offset.

Global environment:

Name Offset

Function f environment:

Name Offset

(b) Annotate each reference to a name or function in the program above with its lexical
address. Recall that a lexical address is a pair (depth, offset).

