Lecture 19: Liveness analysis

David Hovemeyer

November 13, 2023

601.428/628 Compilers and Interpreters

| -

B il!,’



» InstructionSequence and ControlFlowGraph
» Determining liveness (high-level and low-level)

» Using liveness information



InstructionSequence and ControlFlowGraph



InstructionSequence and ControlFlowGraph

InstructionSequence: represents a linear sequence of Instructions
(high-level or low-level)

ControlFlowGraph: a graph of BasicBlocks

» A BasicBlock is just an InstructionSequence with a little bit of
additional information

» A branch or function call can only be the last instruction in the basic block

» Instructions that are a control flow target must always be the first
instruction in a basic block

» Edges of graph represent control flow possibilities



Converting InstructionSequence to ControlFlowGraph

// High-level InstructionSequence to high-level CFG

std: :shared_ptr<InstructionSequence> hl_iseq = /* ... */
HighLevelControlFlowGraphBuilder hl_builder(hl_iseq);

std: :shared_ptr<ControlFlowGraph> hl cfg = hl builder.build();

// Low-level InstructionSequence to low-level CFG

std: :shared_ptr<InstructionSequence> 11 iseq = /* ... */
LowLevelControlFlowGraphBuilder 11 builder(1ll_iseq);

std: :shared_ptr<ControlFlowGraph> 11_cfg = 11_builder.build();



Converting ControlFlowGraph to InstructionSequence

// Works for either high-level or low-level CFG

std: :shared_ptr<ControlFlowGraph> cfg = /* ... */

std: :shared_ptr<InstructionSequence> iseq =
cfg->create_instruction_sequence();



Computing liveness information for high-level IR

std: :shared_ptr<ControlFlowGraph> hl_cfg = /*x ... */;
LiveVregs live_vregs(hl cfg);
live_vregs.execute();

// live_vregs now has liveness information for virtual registers
// used in basic blocks of the control flow graph



Making use of liveness information

The best way to make use of liveness analysis results (or results from any other
dataflow analysis) is to derive a class from ControlFlowGraphTransform:

» Your derived class's constructor executes the liveness analysis (and
potentially other dataflow analyses) on the ControlFlowGraph

» Override the transform basic_block member function to implement a
local (basic-block scope) code transformation

» Within transform basic_block, you can use the analysis's
get_fact_before_instruction and/or
get_fact_after_instruction functions to get the dataflow fact at the

location immediately before or after a specified instruction in the basic
block

» For liveness analysis, the dataflow fact is a std: :bitset containing the
register numbers of live virtual or machine registers



A control flow graph transformation

class MyTransform : public ControlFlowGraphTransform {
private:

LiveVregs m_live_vregs;

// ...other analyses if needed...

public:
MyTransform(const std::shared_ptr<ControlFlowGraph> &cfg);

virtual std::shared_ptr<InstructionSequence>
transform_basic_block(const InstructionSequence *orig_bb);

};



CFG transform: constructor

MyTransform: :MyTransform(const std::shared_ptr<ControlFlowGraph &cfg)
: ControlFlowGraphTransform(cfg)
, m_live_vregs(cfg) {
m_live_vregs.execute(); // compute vreg liveness

3



CFG transform: basic block transform

std: :shared_ptr<InstructionSequence>
MyTransform: :transform_basic_block(const InstructionSequence *orig_bb) {
std: :shared_ptr<InstructionSequence> result_iseq(new InstructionSequence());

for (auto i = orig_bb->cbegin(); i != orig_bb->cend(); ++i) {
Instruction *orig_ins = *i;

/] ...

// Determine live vregs after instruction executes

LiveVregs: :FactType fact
m_live_vregs.get_fact_after_instruction(orig_ins);

/] ...

result_iseq->append(/* transformed instruction */);

return result_iseq;

}



For liveness on low-level code

LiveMregs computes liveness for machine registers. It works the same way as
LiveVregs, except that the dataflow facts are bitsets of machine registers
containing live values.

» The bitset values are the ordinal values of members of the MachineReg
enumeration (i.e., MREG_RAX, etc.)



For further details...

See Assignment 5 for more details



	InstructionSequence and ControlFlowGraph

