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Semantic analysis

▶ Parser establishes whether or not the input source is syntactically value
▶ This does not guarantee that the input is semantically valid
▶ E.g., int x = "hello";

▶ Semantic analysis:
▶ Check that names refer to something valid
▶ Check that operations performed are consistent with the source

language’s semantics



Formal vs. ad-hoc techniques

▶ With lexical analysis and parsing, formal techniques are very effective
▶ Lexical analysis: regular languages, regular expressions, finite automata
▶ Parsing: context-free grammars, parsing algorithms

▶ Formal approach to semantic analysis: attribute grammars
▶ Never widely used, we will (probably) not cover them

▶ Ad-hoc semantic analysis: write ad-hoc code to check semantic properties
▶ Could execute during parsing
▶ Could execute on a representation of the input source (i.e., the AST)



AST visitors



Doing a computation on a tree

// approach 1
void TreeComputation::process_tree(Node *n) {

switch (n->get_tag()) {
case NODE_TAG_1:

...code to handle NODE_TAG_1...

...recursively process children...
break;

case NODE_TAG_2:
...code to handle NODE_TAG_2...
...recursively process children...
break;

...etc...
}

}



Doing a computation on a tree

// approach 2
void TreeComputation::process_tree(Node *n) {

switch (n->get_tag()) {
case NODE_TAG_1:

visit_node_tag_1(n); // will also process children
break;

case NODE_TAG_2:
visit_node_tag_2(n); // will also process children
break;

...etc...
}

}



Observation

▶ Lots of repetitive code
▶ Second approach is nice in that each kind of tree node is handled by a

dedicated function
▶ But the big switch statement is still tedious and error-prone code

▶ Also: what if we have multiple tree computations?
▶ Potential for duplicated code



Visitor design pattern

▶ Idea: abstract the traversal and dispatching to per-node-type functions
into a base class

▶ Derived classes then only need to override the per-node-type member
functions as necessary



ASTVisitor

▶ ASTVisitor: a base class for implementations of tree computations on
the AST
▶ Assignment 3: SemanticAnalysis
▶ Assignment 4: high-level code generation



ASTVisitor

class ASTVisitor {
public:

ASTVisitor();
virtual ~ASTVisitor();

virtual void visit(Node *n); // <-- switch statement is here
virtual void visit_unit(Node *n);
virtual void visit_variable_declaration(Node *n);
...many others...

virtual void visit_children(Node *n); // <-- recursively visit children
virtual void visit_token(Node *n);

};



General recursive treewalk

▶ The default behavior of each node-specific visit function is to call
visit_children

▶ This means that the default behavior of any class derived from
ASTVisitor is a general recursive treewalk of the AST

▶ Which is why a derived visitor class can just override the visit functions
that it actually cares about



Defining a visit function

Note that if you override a node-specific visit function, then it’s up to you to
decide whether and how to visit children.

Example:
void SemanticAnalysis::visit_variable_declaration(Node *n) {

// visit the base type
visit(n->get_kid(1));
std::shared_ptr<Type> base_type = n->get_kid(1)->get_type();

// iterate through declarators, adding variables
// to the symbol table
Node *decl_list = n->get_kid(2);
for (auto i = decl_list->cbegin(); i != decl_list->cend(); ++i) {

Node *declarator = *i;
// ...handle the declarator...

}
}



Where results go

▶ The most straightforward way to record results is to store them in the
visited tree node

▶ For example:
▶ Store a pointer to a symbol table entry in a node representing a

reference to a variable or function
▶ Store a (shared) pointer to the Type object representing the type of an

expression
▶ Store a boolean value indicating whether or not an expression yields an

lvalue



NodeBase

The purpose of the NodeBase class is to give you a place to define new
member variables and member functions for AST nodes.

The reason we don’t recommend that you modify Node directly is that we
might want to give you a new version. Putting your changes in NodeBase
means you never need to modify Node.



Propagation of values

▶ Propagating values upwards in the tree is generally easy, because the
parent has links to its children
▶ Recursively visit children, then make use of computed values stored in

them
▶ Propagating values downwards is more difficult because child nodes don’t

link back to the parent
▶ Fortunately, upwards tends to be the most natural direction
▶ For the rare cases of propagating values downwards (e.g., for

communicating the base type to the code that processes declarators) you
might need to write some custom traversal code



Ad-hoc semantic analysis, symbol tables



Semantic analysis, symbol tables

Two of the main concerns of semantic analysis:
1. Determine what each name refers to
2. Determine a type for each expression

Building symbol tables is the classic approach to performing semantic analysis



SymbolTable = Environment

▶ If you’re comfortable with the notion of “environment” from the
interpreter project, a symbol table is more or less the same thing
▶ Represents a scope in the program
▶ Stores information about what names in that scope refer to
▶ Can have a “parent” representing the enclosing scope

▶ The main difference is that Environment kept track of a runtime value
for each name, while SymbolTable will keep track of information about a
variable, function, or data type



Symbol class

// represents one symbol table entry
class Symbol {
private:

SymbolKind m_kind;
std::string m_name;
std::shared_ptr<Type> m_type;
SymbolTable *m_symtab;
bool m_is_defined;

public:
// constructor, member functions...

};



Symbol tables example
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Symbol tables example



Type checking

Type checking: based on the types of variables and literals, check each
operation in the program to make sure the operand types are consistent with
the language’s semantic rules

Because C requires a declaration or definition to precede each use (for
variables, functions, and types), the symbol table should have information
about referenced names at the point of their use



Type checking examples
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Type checking examples



Semantic analysis and type checking

To conclude:
▶ The semantic analyzer builds symbol tables recording the name and type

of each variable, function, and struct type
▶ The symbol tables can be used to check that each operation in the code

follows the source language’s semantic rules
▶ The symbol tables will also be useful (and necessary) for storage

allocation and code generation



An example



An example

int sq(int *p) {
int x;
x = *p;

}

int main(void) {
int a;
a = 3;
sq(&a);
return a;

}
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