
Lecture 12: AST visitors, ad-hoc semantic analysis

David Hovemeyer

October 11, 2023

601.428/628 Compilers and Interpreters



Agenda

▶ Semantic analysis
▶ AST visitors
▶ Ad-hoc semantic analysis, symbol tables
▶ An example



Semantic analysis

▶ Parser establishes whether or not the input source is syntactically value
▶ This does not guarantee that the input is semantically valid
▶ E.g., int x = "hello";

▶ Semantic analysis:
▶ Check that names refer to something valid
▶ Check that operations performed are consistent with the source

language’s semantics



Formal vs. ad-hoc techniques

▶ With lexical analysis and parsing, formal techniques are very effective
▶ Lexical analysis: regular languages, regular expressions, finite automata
▶ Parsing: context-free grammars, parsing algorithms

▶ Formal approach to semantic analysis: attribute grammars
▶ Never widely used, we will (probably) not cover them

▶ Ad-hoc semantic analysis: write ad-hoc code to check semantic properties
▶ Could execute during parsing
▶ Could execute on a representation of the input source (i.e., the AST)



AST visitors



Doing a computation on a tree

// approach 1
void TreeComputation::process_tree(Node *n) {

switch (n->get_tag()) {
case NODE_TAG_1:

...code to handle NODE_TAG_1...

...recursively process children...
break;

case NODE_TAG_2:
...code to handle NODE_TAG_2...
...recursively process children...
break;

...etc...
}

}



Doing a computation on a tree

// approach 2
void TreeComputation::process_tree(Node *n) {

switch (n->get_tag()) {
case NODE_TAG_1:

visit_node_tag_1(n); // will also process children
break;

case NODE_TAG_2:
visit_node_tag_2(n); // will also process children
break;

...etc...
}

}



Observation

▶ Lots of repetitive code
▶ Second approach is nice in that each kind of tree node is handled by a

dedicated function
▶ But the big switch statement is still tedious and error-prone code

▶ Also: what if we have multiple tree computations?
▶ Potential for duplicated code



Visitor design pattern

▶ Idea: abstract the traversal and dispatching to per-node-type functions
into a base class

▶ Derived classes then only need to override the per-node-type member
functions as necessary



ASTVisitor

▶ ASTVisitor: a base class for implementations of tree computations on
the AST
▶ Assignment 3: SemanticAnalysis
▶ Assignment 4: high-level code generation



ASTVisitor

class ASTVisitor {
public:

ASTVisitor();
virtual ~ASTVisitor();

virtual void visit(Node *n); // <-- switch statement is here
virtual void visit_unit(Node *n);
virtual void visit_variable_declaration(Node *n);
...many others...

virtual void visit_children(Node *n); // <-- recursively visit children
virtual void visit_token(Node *n);

};



General recursive treewalk

▶ The default behavior of each node-specific visit function is to call
visit_children

▶ This means that the default behavior of any class derived from
ASTVisitor is a general recursive treewalk of the AST

▶ Which is why a derived visitor class can just override the visit functions
that it actually cares about



Defining a visit function

Note that if you override a node-specific visit function, then it’s up to you to
decide whether and how to visit children.

Example:
void SemanticAnalysis::visit_variable_declaration(Node *n) {

// visit the base type
visit(n->get_kid(1));
std::shared_ptr<Type> base_type = n->get_kid(1)->get_type();

// iterate through declarators, adding variables
// to the symbol table
Node *decl_list = n->get_kid(2);
for (auto i = decl_list->cbegin(); i != decl_list->cend(); ++i) {

Node *declarator = *i;
// ...handle the declarator...

}
}



Where results go

▶ The most straightforward way to record results is to store them in the
visited tree node

▶ For example:
▶ Store a pointer to a symbol table entry in a node representing a

reference to a variable or function
▶ Store a (shared) pointer to the Type object representing the type of an

expression
▶ Store a boolean value indicating whether or not an expression yields an

lvalue



NodeBase

The purpose of the NodeBase class is to give you a place to define new
member variables and member functions for AST nodes.

The reason we don’t recommend that you modify Node directly is that we
might want to give you a new version. Putting your changes in NodeBase
means you never need to modify Node.



Propagation of values

▶ Propagating values upwards in the tree is generally easy, because the
parent has links to its children
▶ Recursively visit children, then make use of computed values stored in

them
▶ Propagating values downwards is more difficult because child nodes don’t

link back to the parent
▶ Fortunately, upwards tends to be the most natural direction
▶ For the rare cases of propagating values downwards (e.g., for

communicating the base type to the code that processes declarators) you
might need to write some custom traversal code



Ad-hoc semantic analysis, symbol tables



Semantic analysis, symbol tables

Two of the main concerns of semantic analysis:
1. Determine what each name refers to
2. Determine a type for each expression

Building symbol tables is the classic approach to performing semantic analysis



SymbolTable = Environment

▶ If you’re comfortable with the notion of “environment” from the
interpreter project, a symbol table is more or less the same thing
▶ Represents a scope in the program
▶ Stores information about what names in that scope refer to
▶ Can have a “parent” representing the enclosing scope

▶ The main difference is that Environment kept track of a runtime value
for each name, while SymbolTable will keep track of information about a
variable, function, or data type



Symbol class

// represents one symbol table entry
class Symbol {
private:

SymbolKind m_kind;
std::string m_name;
std::shared_ptr<Type> m_type;
SymbolTable *m_symtab;
bool m_is_defined;

public:
// constructor, member functions...

};



Symbol tables example



Symbol tables example



Symbol tables example



Symbol tables example



Symbol tables example



Symbol tables example



Symbol tables example



Type checking

Type checking: based on the types of variables and literals, check each
operation in the program to make sure the operand types are consistent with
the language’s semantic rules

Because C requires a declaration or definition to precede each use (for
variables, functions, and types), the symbol table should have information
about referenced names at the point of their use



Type checking examples



Type checking examples



Type checking examples



Type checking examples



Type checking examples



Semantic analysis and type checking

To conclude:
▶ The semantic analyzer builds symbol tables recording the name and type

of each variable, function, and struct type
▶ The symbol tables can be used to check that each operation in the code

follows the source language’s semantic rules
▶ The symbol tables will also be useful (and necessary) for storage

allocation and code generation



An example



An example

int sq(int *p) {
int x;
x = *p;

}

int main(void) {
int a;
a = 3;
sq(&a);
return a;

}



ARG_EXPR_LIST_0

UNARY_EXPR_1

BASIC_TYPE_0

TOK_INT_0
[int]

BASIC_TYPE_1

TOK_INT_1
[int]

BASIC_TYPE_2

TOK_INT_2
[int]

BASIC_TYPE_3

TOK_INT_3
[int]

BASIC_TYPE_4

TOK_INT_4
[int]

BINARY_EXPR_0

UNARY_EXPR_0VAR_REF_0TOK_ASSIGN_0
[=]

BINARY_EXPR_1

LIT_VALUE_0VAR_REF_2TOK_ASSIGN_1
[=]

DECLARATOR_LIST_0

NAMED_DECLARATOR_1

DECLARATOR_LIST_1

NAMED_DECLARATOR_2

EXPR_STMT_0 EXPR_STMT_1 EXPR_STMT_2

FUNC_CALL_EXPR_0

VAR_REF_3

FUNC_DEF_0

FUNC_PARAM_LIST_0 STMT_LIST_0ident_0
[sq]

FUNC_DEF_1

FUNC_PARAM_LIST_1 STMT_LIST_1ident_5
[main]

FUNC_PARAM_0

PTR_DECLARATOR_0

TOK_INT_LIT_0
[3]

NAMED_DECLARATOR_0

ident_1
[p]

ident_2
[x]

ident_6
[a]

RETURN_EXPR_STMT_0

VAR_REF_5

VAR_DECL_0 VAR_DECL_1

VAR_REF_1TOK_ASTERISK_0
[*]

VAR_REF_4TOK_AMPERSAND_0
[&]

UNIT_0

TOK_UNSPEC_STORAGE_0 TOK_UNSPEC_STORAGE_1

ident_3
[x]

ident_4
[p]

ident_7
[a]

ident_8
[sq]

ident_9
[a]

ident_10
[a]


	AST visitors
	Ad-hoc semantic analysis, symbol tables
	An example

