
Lecture 5: Interpreter runtime structures

David Hovemeyer

September 13, 2023

601.428/628 Compilers and Interpreters



Today

▶ Scopes, environments, function calls
▶ Runtime data structures
▶ Reference counting



Scopes, environments, and function calls



Scope, lifetime

▶ Scope: in what region(s) of the program is a particular variable visible?
▶ Lifetime: when in the execution of the program does a variable exist?
▶ These are related but distinct concepts



Example program
var a, b, c;
a = 1;
b = 2;
c = 3;

function add1(a) {
var b;
b = 1;
c = 4;
a + b;

}

var d;
d = add1(c);

println(a);
println(b);
println(c);
d;



Example program
var a, b, c;
a = 1;
b = 2;
c = 3;

function add1(a) {
var b;
b = 1;
c = 4;
a + b;

}

var d;
d = add1(c);

println(a);
println(b);
println(c);
d;



Example program
var a, b, c;
a = 1;
b = 2;
c = 3;

function add1(a) {
var b;
b = 1;
c = 4;
a + b;

}

var d;
d = add1(c);

println(a);
println(b);
println(c);
d;



Example program
var a, b, c;
a = 1;
b = 2;
c = 3;

function add1(a) {
var b;
b = 1;
c = 4;
a + b;

}

var d;
d = add1(c);

println(a);
println(b);
println(c);
d;



Example program
var a, b, c;
a = 1;
b = 2;
c = 3;

function add1(a) {
var b;
b = 1;
c = 4;
a + b;

}

var d;
d = add1(c);

println(a);
println(b);
println(c);
d;



Example program
var a, b, c;
a = 1;
b = 2;
c = 3;

function add1(a) {
var b;
b = 1;
c = 4;
a + b;

}

var d;
d = add1(c);

println(a);
println(b);
println(c);
d;



Example program
var a, b, c;
a = 1;
b = 2;
c = 3;

function add1(a) {
var b;
b = 1;
c = 4;
a + b;

}

var d;
d = add1(c);

println(a);
println(b);
println(c);
d;



Example program
var a, b, c;
a = 1;
b = 2;
c = 3;

function add1(a) {
var b;
b = 1;
c = 4;
a + b;

}

var d;
d = add1(c);

println(a);
println(b);
println(c);
d;



Example program
var a, b, c;
a = 1;
b = 2;
c = 3;

function add1(a) {
var b;
b = 1;
c = 4;
a + b;

}

var d;
d = add1(c);

println(a);
println(b);
println(c);
d;



Example program
var a, b, c;
a = 1;
b = 2;
c = 3;

function add1(a) {
var b;
b = 1;
c = 4;
a + b;

}

var d;
d = add1(c);

println(a);
println(b);
println(c);
d;



Variable lifetime

▶ Global variables exist for the duration of the execution of the program
▶ Parameters and local variables exist for the duration of a function call
▶ Call stack: each call pushes an activation record
▶ A calls B, B calls C, C calls D, etc. — arbitrarily many calls can be in

progress at any point
▶ In practice, the call stack is usually limited in size

▶ Recursion: A calls itself
▶ Caller and callee always have distinct activation records



Environment

▶ We’ll use the term environment for a data structure containing a
collection of variables that have a common lifetime

▶ Global environment: has definitions of global variables
▶ Global variables are visible throughout the program unless shadowed by

a variable in an “inner” scope
▶ Function call environment: created to represent parameters of a called

function
▶ Block (statement list) environment: created to accommodate local

variables defined in a block (statement list enclosed by curly braces)



Nesting of environments

▶ Nesting: an “inner” environment can reference variables in an “outer”
environment
▶ But not vice versa!

▶ In a block-structured language, every “block” defines a new environment
▶ Our interpreter language is block-structured (Assignment 2)
▶ C, C++, Java are block-structured languages

▶ To implement nesting, each environment can have a pointer to its
“parent” environment, i.e., the environment representing the enclosing
scope



Example program



Example program



Example program



Example program



Example program



Example program



Example program



Example program



Example program



Example program



Example program



Example program



Example program



Example program



Example program



Lexical addresses

In a language where every variable’s scope is known statically, we can use
lexical addresses to associate variable references with their definitions

Each variable has an integer position

Lexical address is pair (depth, position)
▶ depth: 0 if referenced variable is in current environment, 1 if in parent, 2

if in grandparent, etc.



Example program



Example program



Example program



Example program



Example program



Determining lexical addresses

Analyze source:
▶ Keep track of current (static) environment, initially the global

environment
▶ Enter a nested scope → enter a nested environment (with previous

environment as its parent)
▶ Leave a nested scope → return to parent environment
▶ Keep track of names defined (variables, functions)
▶ As long as definitions precede uses, we can associate each reference to a

name with an entry in a static environment
▶ Static (pre-execution) environments are also called symbol tables
▶ Much more about these when we move on to compilers!



Runtime data structures



Runtime data structures

Important runtime data structures to support the execution of the program
being interpreted:
▶ Values
▶ Environments
▶ Functions



Values

How to represent a runtime value? Assuming a dynamically-typed language,
where a value’s data type can’t (necessarily) be predicted until the program
runs, we need:
▶ The value’s type
▶ A representation of the value



Value representation

▶ Different data types require different representations
▶ Some values are fixed size (e.g., fixed-precision integers, floating point

values, pointer or reference to an object)
▶ Some values require arbitrary storage (e.g., arrays, objects, etc.)
▶ Typical approach: allow the representation to be either an “atomic”

(fixed-size) value, or a pointer to a “dynamic” representation object



Kinds of values

enum ValueKind {
// "atomic" values
VALUE_INT,
VALUE_DOUBLE,
VALUE_INTRINSIC_FN,
// other kinds of atomic values...

// "dynamic" values
VALUE_FUNCTION,
VALUE_ARRAY,
VALUE_STRING,
// other kinds of dynamic values

};



Atomic values

union Atomic {
int ival;
double dval;
IntrinsicFn intrinsic_fn;
// etc.

};

IntrinsicFn is a pointer to an “intrinsic” function, i.e., one implemented
directly by the interpreter



Value

class Value {
private:

ValueKind m_kind;
union {

Atomic m_atomic;
ValRep *m_valrep;

};

public:
// various constructors...
Value(const Value &other);
~Value();

Value &operator=(const Value &rhs);

// member functions...
};



Dynamic values

All classes implementing representations of dynamic values (functions, arrays,
strings, etc.) derive from ValRep. I.e.:
class Function : public ValRep {

// ...
};

class Array : public ValRep {
// ...

};

class String : public ValRep {
// ...

};

The type of representation object is indicated by the Value’s m_kind value:
e.g., if it’s VALUE_FUNCTION then m_valrep points to a Function object



Managing dynamic representations

▶ The Value class has (and needs) value semantics (copy constructor and
assignment)

▶ Runtime values are frequently copied from one variable to another, passed
to a function, returned from a function, etc.

▶ How do we ensure that dynamic representation objects are deallocated
when no longer needed?
▶ Issue: multiple Value instances might have pointers to the same

dynamic representation object
▶ More on this in a bit



Functions are values

function add1(x) {
x + 1;

}
function apply(f, v) {

f(v);
}

var g;
g = add1;

apply(g, 4);

The above program computes the value 5. Many dynamic languages and all
functional languages treat functions as values.



Environment

An environment is
▶ A map of names to values
▶ A reference (pointer) to the parent environment (representing the

enclosing scope)
▶ The environment representing the global scope does not have a parent



Environment

class Environment {
private:

Environment *m_parent;
std::map<std::string, Value> m_varmap;

public:
Environment(Environment *parent);
~Environment();

// member functions...
};



Environment operations

Operations an environment should support:
▶ Creating a new variable (setting it to some initial default value)
▶ It should be an error to define a variable that already exists

▶ Determining whether a variable is defined locally in the environment
▶ Looking up the value of a locally-defined variable
▶ Looking up the value of a variable, including searching outer scope(s) if

necessary



Functions

A function is
▶ A list of 0 or more parameters
▶ A pointer to the environment representing the scope enclosing the

function (for top-level functions, the global scope)
▶ An AST representing the body of the function

Since a function is a dynamic value, its representation is derived from ValRep.



Function representation

class Function : public ValRep {
private:

std::vector<std::string> m_params;
Environment *m_parent_env;
Node *m_body;

public:
Function(const std::vector<std::string> &params,

Environment *parent_env,
Node *body);

~Function();

// member functions...
};



Executing a function call

▶ As we’ve seen, executing a function call means:
▶ Creating a new environment for it (with global environment as parent)
▶ Evaluating argument expressions
▶ Binding function parameters to argument values in the new function

call environment
▶ Evaluating the body of the function in the new function call

environment
▶ Because the body of a function is a block, it will have its own

environment whose parent is the function call environment
▶ Result of evaluating body is result of function
▶ Becomes value of function call expression at call site



Reference counting



Reference counting

Reference counting is a simple and mostly-effective way of keeping track of
uses of dynamically allocated objects, and deleting them when they are no
longer needed.

The idea is to maintain an integer reference count within each dynamic object:
▶ If the reference count is > 0, it is still in use
▶ If the reference count is = 0, it is no longer in use, and should be deleted



Maintaining reference counts

C++ makes it easy to track reference counts using “smart pointer” objects.

Rather than the interpreter keeping direct pointers to dynamic objects
(ValRep *), it wraps them in an object with value semantics that
▶ increments and decrements reference counts as needed
▶ frees dynamic objects when the reference count reaches 0

In Assignment 2, the Value class serves as the smart pointer type for dynamic
objects. (Which makes sense, because Value represents a runtime value.)



Attach and detach

The important operations for the smart pointer type are attach and detach:
▶ Attach: increment the dynamic object’s reference count and store a

pointer to it
▶ Detach: decrement current dynamic object’s reference count, delete it if

the reference count is 0
▶ For safety, it’s not a bad idea to store null in the pointer so that there

isn’t a dangling pointer to the dynamic object



Smart pointer operations

▶ Constructor from pointer to dynamic object: attach to the dynamic object
▶ Copy constructor: attach to the other smart pointer’s dynamic object (if

there is one)
▶ Destructor: detach from current dynamic object (if there is one)
▶ Assignment operator: detach from current dynamic object (if there is

one), attach to other smart pointer’s dynamic object (if there is one)



Limitation of reference counting

▶ Reference counting has trouble reclaiming dynamic objects if there are
reference cycles
▶ E.g., object A has a pointer to object B, and object B has a pointer to

object A
▶ Both A’s and B’s reference counts stay at 1 even though they are not

reachable
▶ Various solutions exist: for example, periodically run a garbage collector


	Scopes, environments, and function calls
	Runtime data structures
	Reference counting

