
Lecture 3: Recursive descent limitations, precedence
climbing

David Hovemeyer

September 6, 2023

601.428/628 Compilers and Interpreters

Today

▶ Limitations of recursive descent
▶ Precedence climbing
▶ Abstract syntax trees
▶ Supporting parenthesized expressions

Before we begin...

Assume a context-free
grammar has the
following productions on
the nonterminal A:

A → b C
A → d E

(A, C, E are
nonterminals; b, d are
terminals)

What is the problem
with the parse function
shown on the right?

Node *Parser::parse_A() {
Node *next_tok = m_lexer->peek();
if (next_tok == nullptr) {

SyntaxError::raise("Unexpected end of input");
}

std::unique_ptr<Node> a(new Node(NODE_A));
int tag = next_tok->get_tag();
if (tag == TOK_b) {

a->append_kid(expect(TOK_b));
a->append_kid(parse_C());

} else if (tag == TOK_d) {
a->append_kid(expect(TOK_d));
a->append_kid(parse_E());

}
return a.release();

}

Limitations of recursive descent

Recall: a better infix expression grammar

Grammar (start symbol is A): A → i = A
A → E
E → E + T
E → E - T
E → T

T → T * F
T → T / F
T → F
F → i
F → n

Precedence levels:

Nonterminal Precedence Meaning Operators Associativity
A lowest Assignment = right
E Expression + - left
T Term * / left
F highest Factor

Parsing infix expressions

Can we write a recursive descent parser for infix expressions using this
grammar?

No

Parsing infix expressions

Can we write a recursive descent parser for infix expressions using this
grammar?

No

Left recursion

Left-associative operators want to have left-recursive productions, but
recursive descent parsers can’t handle left recursion

Why?

Consider productions for the E nonterminal:

E → E + T
E → E - T
E → T

Left recursion (continued)

Imagine what the parse function for E would look like:
Node *Parser::parse_E() {

std::unique_ptr<Node> e(new Node(NODE_E));

if (some condition) {
// apply E -> E + T production
e->append_kid(parse_E());
e->append_kid(expect(TOK_PLUS));
e->append_kid(parse_T());

}

Left recursion (continued)

Imagine what the parse function for E would look like:
Node *Parser::parse_E() {

std::unique_ptr<Node> e(new Node(NODE_E));

if (some condition) {
// apply E -> E + T production
e->append_kid(parse_E()); <--- problem
e->append_kid(expect(TOK_PLUS));
e->append_kid(parse_T());

}

The problem with left recursion

Parse functions are recursive if there are recursive productions on the parse
function’s nonterminal symbol

In a left-recursive production such as E → E + T , if the production is
chosen,
▶ No tokens have been consumed prior to the recursive call to parse_E()
▶ So, in the recursive call, the lexer is in the same state as the original call

to parse_E()

Thus, the recursive call will also attempt to choose the E → E + T
production

Infinite recursion

The problem with left recursion

Parse functions are recursive if there are recursive productions on the parse
function’s nonterminal symbol

In a left-recursive production such as E → E + T , if the production is
chosen,
▶ No tokens have been consumed prior to the recursive call to parse_E()
▶ So, in the recursive call, the lexer is in the same state as the original call

to parse_E()

Thus, the recursive call will also attempt to choose the E → E + T
production

Infinite recursion

Observation

For any “reasonable” grammar, each nonterminal symbol must have (at least)
one non-recursive production
▶ If all of the productions on a nonterminal are recursive, then there is no

way to ever eliminate that nonterminal from the working string in a
derivation

The non-recursive productions on a nonterminal are the base cases for the
nonterminal’s parse function

Eliminating left recursion

There is a trick for eliminating left recursion!

Given productions
A → A α
A → β

These productions generate a β followed by 0 or more occurrences of α

We can rewrite these productions as
A → β A’
A’ → α A’
A’ → ϵ (note that ϵ designates the empty string)

without changing the language generated by the grammar

Revised infix expression grammar

Grammar (start symbol is A): A → i = A
A → E
E → T E’
E’ → + T E’
E’ → - T E’
E’ → ϵ

T → F T’
T’ → * F T’
T’ → / F T’
T’ → ϵ
F → i
F → n

(Again, note that ϵ designates the empty string)

Example derivation
Derivation for 4 + 9 * 3 (really, n + n * n)

Working string Production
A

A → E
E E → T E’
T E’ T → F T’
F T’ E’ F → n
n T’ E’ T’ → ϵ
n E’ E’ → + T E’
n + T E’ T → F T’
n + F T’ E’ F → n
n + n T’ E’ T’ → * F T’
n + n * F T’ E’ F → n
n + n * n T’ E’ T’ → ϵ
n + n * n E’ E’ → ϵ
n + n * n

Done!

Example derivation
Derivation for 4 + 9 * 3 (really, n + n * n)

Working string Production
A A → E
E

E → T E’
T E’ T → F T’
F T’ E’ F → n
n T’ E’ T’ → ϵ
n E’ E’ → + T E’
n + T E’ T → F T’
n + F T’ E’ F → n
n + n T’ E’ T’ → * F T’
n + n * F T’ E’ F → n
n + n * n T’ E’ T’ → ϵ
n + n * n E’ E’ → ϵ
n + n * n

Done!

Example derivation
Derivation for 4 + 9 * 3 (really, n + n * n)

Working string Production
A A → E
E E → T E’
T E’

T → F T’
F T’ E’ F → n
n T’ E’ T’ → ϵ
n E’ E’ → + T E’
n + T E’ T → F T’
n + F T’ E’ F → n
n + n T’ E’ T’ → * F T’
n + n * F T’ E’ F → n
n + n * n T’ E’ T’ → ϵ
n + n * n E’ E’ → ϵ
n + n * n

Done!

Example derivation
Derivation for 4 + 9 * 3 (really, n + n * n)

Working string Production
A A → E
E E → T E’
T E’ T → F T’
F T’ E’

F → n
n T’ E’ T’ → ϵ
n E’ E’ → + T E’
n + T E’ T → F T’
n + F T’ E’ F → n
n + n T’ E’ T’ → * F T’
n + n * F T’ E’ F → n
n + n * n T’ E’ T’ → ϵ
n + n * n E’ E’ → ϵ
n + n * n

Done!

Example derivation
Derivation for 4 + 9 * 3 (really, n + n * n)

Working string Production
A A → E
E E → T E’
T E’ T → F T’
F T’ E’ F → n
n T’ E’

T’ → ϵ
n E’ E’ → + T E’
n + T E’ T → F T’
n + F T’ E’ F → n
n + n T’ E’ T’ → * F T’
n + n * F T’ E’ F → n
n + n * n T’ E’ T’ → ϵ
n + n * n E’ E’ → ϵ
n + n * n

Done!

Example derivation
Derivation for 4 + 9 * 3 (really, n + n * n)

Working string Production
A A → E
E E → T E’
T E’ T → F T’
F T’ E’ F → n
n T’ E’ T’ → ϵ
n E’

E’ → + T E’
n + T E’ T → F T’
n + F T’ E’ F → n
n + n T’ E’ T’ → * F T’
n + n * F T’ E’ F → n
n + n * n T’ E’ T’ → ϵ
n + n * n E’ E’ → ϵ
n + n * n

Done!

Example derivation
Derivation for 4 + 9 * 3 (really, n + n * n)

Working string Production
A A → E
E E → T E’
T E’ T → F T’
F T’ E’ F → n
n T’ E’ T’ → ϵ
n E’ E’ → + T E’
n + T E’

T → F T’
n + F T’ E’ F → n
n + n T’ E’ T’ → * F T’
n + n * F T’ E’ F → n
n + n * n T’ E’ T’ → ϵ
n + n * n E’ E’ → ϵ
n + n * n

Done!

Example derivation
Derivation for 4 + 9 * 3 (really, n + n * n)

Working string Production
A A → E
E E → T E’
T E’ T → F T’
F T’ E’ F → n
n T’ E’ T’ → ϵ
n E’ E’ → + T E’
n + T E’ T → F T’
n + F T’ E’

F → n
n + n T’ E’ T’ → * F T’
n + n * F T’ E’ F → n
n + n * n T’ E’ T’ → ϵ
n + n * n E’ E’ → ϵ
n + n * n

Done!

Example derivation
Derivation for 4 + 9 * 3 (really, n + n * n)

Working string Production
A A → E
E E → T E’
T E’ T → F T’
F T’ E’ F → n
n T’ E’ T’ → ϵ
n E’ E’ → + T E’
n + T E’ T → F T’
n + F T’ E’ F → n
n + n T’ E’

T’ → * F T’
n + n * F T’ E’ F → n
n + n * n T’ E’ T’ → ϵ
n + n * n E’ E’ → ϵ
n + n * n

Done!

Example derivation
Derivation for 4 + 9 * 3 (really, n + n * n)

Working string Production
A A → E
E E → T E’
T E’ T → F T’
F T’ E’ F → n
n T’ E’ T’ → ϵ
n E’ E’ → + T E’
n + T E’ T → F T’
n + F T’ E’ F → n
n + n T’ E’ T’ → * F T’
n + n * F T’ E’

F → n
n + n * n T’ E’ T’ → ϵ
n + n * n E’ E’ → ϵ
n + n * n

Done!

Example derivation
Derivation for 4 + 9 * 3 (really, n + n * n)

Working string Production
A A → E
E E → T E’
T E’ T → F T’
F T’ E’ F → n
n T’ E’ T’ → ϵ
n E’ E’ → + T E’
n + T E’ T → F T’
n + F T’ E’ F → n
n + n T’ E’ T’ → * F T’
n + n * F T’ E’ F → n
n + n * n T’ E’

T’ → ϵ
n + n * n E’ E’ → ϵ
n + n * n

Done!

Example derivation
Derivation for 4 + 9 * 3 (really, n + n * n)

Working string Production
A A → E
E E → T E’
T E’ T → F T’
F T’ E’ F → n
n T’ E’ T’ → ϵ
n E’ E’ → + T E’
n + T E’ T → F T’
n + F T’ E’ F → n
n + n T’ E’ T’ → * F T’
n + n * F T’ E’ F → n
n + n * n T’ E’ T’ → ϵ
n + n * n E’

E’ → ϵ
n + n * n

Done!

Example derivation
Derivation for 4 + 9 * 3 (really, n + n * n)

Working string Production
A A → E
E E → T E’
T E’ T → F T’
F T’ E’ F → n
n T’ E’ T’ → ϵ
n E’ E’ → + T E’
n + T E’ T → F T’
n + F T’ E’ F → n
n + n T’ E’ T’ → * F T’
n + n * F T’ E’ F → n
n + n * n T’ E’ T’ → ϵ
n + n * n E’ E’ → ϵ
n + n * n

Done!

Example parse tree

Working string Production
A A → E
E E → T E’
T E’ T → F T’
F T’ E’ F → n
n T’ E’ T’ → ϵ
n E’ E’ → + T E’
n + T E’ T → F T’
n + F T’ E’ F → n
n + n T’ E’ T’ → * F T’
n + n * F T’ E’ F → n
n + n * n T’ E’ T’ → ϵ
n + n * n E’ E’ → ϵ
n + n * n

Example parse tree

Working string Production
A A → E
E E → T E’
T E’ T → F T’
F T’ E’ F → n
n T’ E’ T’ → ϵ
n E’ E’ → + T E’
n + T E’ T → F T’
n + F T’ E’ F → n
n + n T’ E’ T’ → * F T’
n + n * F T’ E’ F → n
n + n * n T’ E’ T’ → ϵ
n + n * n E’ E’ → ϵ
n + n * n

Observations

▶ Operator precedence is preserved
▶ Operator associativity is not preserved
▶ All infix operators become (effectively) right-associative

▶ Operators end up in strange places in the parse tree
▶ Makes the parse tree a bit difficult to reason about

Precedence climbing

Another observation

After applying the left recursion elimination refactoring to the productions for
additive (+, -) operators:

Productions: E → T E’
E’ → + T E’
E’ → - T E’
E’ → ϵ

What this means:

An additive expression (E) is
▶ a single term (T, expression with only multiplicative or higher-precedence

operators),
▶ followed by 0 or more pairs of additive operator and term

Another observation

After applying the left recursion elimination refactoring to the productions for
additive (+, -) operators:

Productions: E → T E’
E’ → + T E’
E’ → - T E’
E’ → ϵ

What this means:

An additive expression (E) is
▶ a single term (T, expression with only multiplicative or higher-precedence

operators),
▶ followed by 0 or more pairs of additive operator and term

Generalizing infix expressions

All infix expressions have the form (X=operand, ⊕=operator)
X
X ⊕ X
X ⊕ X ⊕ X
etc...

Rather than using a general purpose parsing technique (recursive descent
following the productions of a context-free grammar) to parse infix
expressions, we could use a specialized parsing algorithm optimized for the
structure of infix expressions

Generalizing infix expressions

All infix expressions have the form (X=operand, ⊕=operator)
X
X ⊕ X
X ⊕ X ⊕ X
etc...

Rather than using a general purpose parsing technique (recursive descent
following the productions of a context-free grammar) to parse infix
expressions, we could use a specialized parsing algorithm optimized for the
structure of infix expressions

Precedence climbing

Precedence climbing is a specialized algorithm for parsing infix expressions:
▶ Arbitrary operators and precedence levels
▶ Arbitrary associativity (left and right)

One very nice feature of recursive descent parsing is that it is easy to embed
specialized parsing algorithms (such as precedence climbing)

I.e., when the recursive descent parser needs to parse an infix expression, it
invokes the precedence climbing parser
▶ Precedence climbing parser returns control after it has parsed one

expression

Precedence climbing algorithm

parse_expression()
return parse_expression_1(parse_primary(), 0)

Source: https://en.wikipedia.org/wiki/Operator-precedence_parser

https://en.wikipedia.org/wiki/Operator-precedence_parser

Precedence climbing algorithm

parse_expression_1(lhs, min_precedence)
lookahead := peek next token
while lookahead is a binary operator whose precedence is >= min_precedence

op := lookahead
advance to next token
rhs := parse_primary ()
lookahead := peek next token
while lookahead is a binary operator whose precedence is greater

than op's, or a right-associative operator
whose precedence is equal to op's

rhs := parse_expression_1 (rhs, lookahead's precedence)
lookahead := peek next token

lhs := the result of applying op with operands lhs and rhs
return lhs

Source: https://en.wikipedia.org/wiki/Operator-precedence_parser

https://en.wikipedia.org/wiki/Operator-precedence_parser

Precedence climbing theory of operation

Assume that the goal is to build a tree to represent the parsed expression
▶ parse_primary parses a primary expression (i.e., an operand)
▶ In our grammar, an occurrence of the F nonterminal is a primary

expression
▶ Recursive calls handle higher-precedence operators, or right-associative

operators at the same precedence level
▶ These will create subtrees

▶ In the case of a series of left-associative operators at the same precedence
level, tree will grow to the left

Precedence climbing in practice

Precedence climbing (like recursive descent) is a predictive parsing algorithm,
so is guided by the lexer

Main concern is to determine whether the lookahead token is an operator
▶ Also, if a token is an operator, what is its precedence and associativity

Parsing languages with infix expressions

▶ Many programming languages use infix expressions for expressing numeric
computations

▶ One approach (which tends to work well in practice):
▶ Use a context-free grammar to describe all syntactic constructs other

than infix expressions
▶ Avoid left recursion
▶ Use recursive descent for parsing all constructs other than infix

expressions
▶ Use precedence climbing for infix expressions

Abstract syntax trees

Expression trees

Parse tree for 4 + 9 * 3
using original context free
grammar:

Expression trees

Parse tree for 4 + 9 * 3 using
precedence climbing (we’re
assuming that primary expressions
are parsed using the parse function
for the F nonterminal):

Abstract syntax trees

▶ Precedence climbing produces trees in which
▶ leaf nodes are primary expressions
▶ interior nodes are operators

▶ This type of representation is called an abstract syntax tree, or “AST”
▶ This is a useful representation of code!
▶ ASTs are essentially parse trees where all unnecessary constructs have

been eliminated

Creating ASTs

▶ Precedence climbing automatically produces an AST-like representation
▶ For more general parsers:
▶ Parse tree could be transformed into an AST
▶ The parser could create an AST directly, skipping the creation of a full

parse tree

Supporting parenthesized expressions

Parenthesized expressions

▶ For languages using infix expressions, we will want to allow parentheses to
explicitly force the order of evaluation

▶ E.g., in (4 + 9) * 3 , the + is done before the *
▶ This is super easy to support!
▶ Idea: a parenthesized expression is a kind of primary expression

Productions for primary expressions

In our example grammar, the F nonterminal (“factor”) represents a primary
expression

Productions: F → i
F → n

Add an additional production:

F → (E)

Note that E is an arbitrary infix expression

	Limitations of recursive descent
	Precedence climbing
	Abstract syntax trees
	Supporting parenthesized expressions

