# Lecture 3: Recursive descent limitations, precedence climbing

David Hovemeyer

September 6, 2023

601.428/628 Compilers and Interpreters



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Limitations of recursive descent
- Precedence climbing
- Abstract syntax trees
- Supporting parenthesized expressions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Assume a context-free grammar has the following productions on the nonterminal A:

 $\begin{array}{l} \mathsf{A} \to \mathsf{b} \ \mathsf{C} \\ \mathsf{A} \to \mathsf{d} \ \mathsf{E} \end{array}$ 

(A, C, E are nonterminals; b, d are terminals)

What is the problem with the parse function shown on the right?

}

```
Node *Parser::parse_A() {
  Node *next_tok = m_lexer->peek();
  if (next_tok == nullptr) {
    SyntaxError::raise("Unexpected end of input");
  }
```

```
std::unique_ptr<Node> a(new Node(NODE_A));
int tag = next_tok->get_tag();
if (tag == TOK_b) {
    a->append_kid(expect(TOK_b));
    a->append_kid(parse_C());
} else if (tag == TOK_d) {
    a->append_kid(expect(TOK_d));
    a->append_kid(parse_E());
}
return a.release();
```

## Limitations of recursive descent

Grammar (start symbol is A):

$$\begin{array}{lll} A \rightarrow i = A & T \rightarrow T \ \ F \\ A \rightarrow E & T \rightarrow T \ \ F \\ E \rightarrow E + T & T \rightarrow F \\ E \rightarrow E - T & F \rightarrow i \\ E \rightarrow T & F \rightarrow n \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Precedence levels:

| Nonterminal | Precedence | Meaning    | Operators | Associativity |
|-------------|------------|------------|-----------|---------------|
| A           | lowest     | Assignment | =         | right         |
| E           |            | Expression | + -       | left          |
| Т           |            | Term       | * /       | left          |
| F           | highest    | Factor     |           |               |

Can we write a recursive descent parser for infix expressions using this grammar?

Can we write a recursive descent parser for infix expressions using this grammar?



Left-associative operators want to have left-recursive productions, but recursive descent parsers can't handle left recursion

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ◆○◆

Why?

Consider productions for the E nonterminal:

 $\begin{array}{l} \mathsf{E} \rightarrow \mathsf{E} + \mathsf{T} \\ \mathsf{E} \rightarrow \mathsf{E} - \mathsf{T} \\ \mathsf{E} \rightarrow \mathsf{T} \end{array}$ 

```
Imagine what the parse function for E would look like:
Node *Parser::parse_E() {
   std::unique_ptr<Node> e(new Node(NODE_E));
```

```
if (some condition) {
   // apply E -> E + T production
   e->append_kid(parse_E());
   e->append_kid(expect(TOK_PLUS));
   e->append_kid(parse_T());
}
```

```
Imagine what the parse function for E would look like:
Node *Parser::parse_E() {
   std::unique_ptr<Node> e(new Node(NODE_E));
```

```
if (some condition) {
   // apply E -> E + T production
   e->append_kid(parse_E()); <--- problem
   e->append_kid(expect(TOK_PLUS));
   e->append_kid(parse_T());
}
```

Parse functions are recursive if there are recursive productions on the parse function's nonterminal symbol

In a left-recursive production such as  $\boxed{\mathsf{E}\to\mathsf{E}+\mathsf{T}}$  , if the production is chosen,

- No tokens have been consumed prior to the recursive call to parse\_E()
- So, in the recursive call, the lexer is in the same state as the original call to parse\_E()

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Thus, the recursive call will also attempt to choose the  $\left\lfloor E \rightarrow E + T \right\rfloor$  production

Parse functions are recursive if there are recursive productions on the parse function's nonterminal symbol

In a left-recursive production such as  $\boxed{E \rightarrow E + T}$  , if the production is chosen,

- No tokens have been consumed prior to the recursive call to parse\_E()
- So, in the recursive call, the lexer is in the same state as the original call to parse\_E()

Thus, the recursive call will also attempt to choose the  $\left\lfloor E \rightarrow E + T \right\rfloor$  production

## Infinite recursion

For any "reasonable" grammar, each nonterminal symbol must have (at least) one non-recursive production

If all of the productions on a nonterminal are recursive, then there is no way to ever eliminate that nonterminal from the working string in a derivation

The non-recursive productions on a nonterminal are the base cases for the nonterminal's parse function

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ◆○◆

#### Eliminating left recursion

There is a trick for eliminating left recursion!

Given productions

$$\begin{array}{l} \mathsf{A} \to \mathsf{A} \ \alpha \\ \mathsf{A} \to \beta \end{array}$$

These productions generate a  $\beta$  followed by 0 or more occurrences of  $\alpha$ 

We can rewrite these productions as

without changing the language generated by the grammar

Grammar (start symbol is A):

$$\begin{array}{l} \mathsf{A} \rightarrow \mathsf{i} = \mathsf{A} \\ \mathsf{A} \rightarrow \mathsf{E} \\ \mathsf{E} \rightarrow \mathsf{T} \mathsf{E}' \\ \mathsf{E}' \rightarrow + \mathsf{T} \mathsf{E}' \\ \mathsf{E}' \rightarrow - \mathsf{T} \mathsf{E}' \\ \mathsf{E}' \rightarrow \epsilon \end{array}$$

$$T \rightarrow F T'$$

$$T' \rightarrow * F T'$$

$$T' \rightarrow / F T'$$

$$T' \rightarrow \epsilon$$

$$F \rightarrow i$$

$$F \rightarrow n$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

(Again, note that  $\epsilon$  designates the empty string)

Derivation for 
$$4 + 9 * 3$$
 (really,  $n + n * n$ )

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Working stringProductionA

Derivation for 
$$4 + 9 * 3$$
 (really,  $n + n * n$ )

| Working string | Production |
|----------------|------------|
| <u>A</u>       | $A\toE$    |
| E              |            |

Derivation for 
$$4 + 9 * 3$$
 (really,  $n + n * n$ )

| Working string | Production   |
|----------------|--------------|
| A              | $A\toE$      |
| E              | $E \to T E'$ |
| <u>T</u> E'    |              |

Derivation for 
$$4 + 9 * 3$$
 (really,  $n + n * n$ )

| Working string | Production        |
|----------------|-------------------|
| <u>A</u>       | $A\toE$           |
| E              | E  ightarrow T E' |
| <u>T</u> E'    | $T \to F T'$      |
| <u>F</u> T' E' |                   |

Derivation for 4 + 9 \* 3 (really, n + n \* n)

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

| Working string | Production   |
|----------------|--------------|
| A              | $A\toE$      |
| Ē              | $E \to T E'$ |
| <u>T</u> E'    | $T\toF\;T'$  |
| <u>F</u> T' E' | $F \to n$    |
| n T' E'        |              |

| Working string | Production       |
|----------------|------------------|
| A              | $A\toE$          |
| Ē              | $E \to T E'$     |
| <u>T</u> E'    | $T \to F T'$     |
| <u>F</u> T' E' | $F \to n$        |
| n <u>T'</u> E' | $T' 	o \epsilon$ |
| n <u>E'</u>    |                  |

| Working string         | Production            |
|------------------------|-----------------------|
| A                      | $A\toE$               |
| E                      | $E  ightarrow T \ E'$ |
| <u>T</u> E'            | $T \to F T'$          |
| <u>F</u> Т' Е'         | F  ightarrow n        |
| n <u>T'</u> E'         | $T' 	o \epsilon$      |
| n <u>E'</u>            | $E' \to + T E'$       |
| $n + \underline{T} E'$ |                       |

| Working string     | Production                               |
|--------------------|------------------------------------------|
| A                  | $A\toE$                                  |
| E                  | $E  ightarrow T \ E'$                    |
| <u>T</u> E'        | $T\toF\;T'$                              |
| <u>F</u> T' E'     | $F \to n$                                |
| n <u>T'</u> E'     | $T' 	o \epsilon$                         |
| n <u>E'</u>        | ${\sf E}'  ightarrow + {\sf T} {\sf E}'$ |
| n + <u>T</u> E'    | $T\toF\;T'$                              |
| n + <u>F</u> T' E' |                                          |

| Working string     | Production                               |
|--------------------|------------------------------------------|
| A                  | $A\toE$                                  |
| E                  | $E  ightarrow T \ E'$                    |
| <u>T</u> E'        | $T\toF\;T'$                              |
| <u>F</u> T' E'     | $F \to n$                                |
| n <u>T'</u> E'     | $T' \to \epsilon$                        |
| n <u>E'</u>        | ${\sf E}'  ightarrow + {\sf T} {\sf E}'$ |
| n + <u>T</u> E'    | $T\toF\;T'$                              |
| n + <u>F</u> T' E' | $F \to n$                                |
| n + n <u>T'</u> E' |                                          |

Derivation for 4 + 9 \* 3 (really, n + n \* n)

| Working string         | Production                               |
|------------------------|------------------------------------------|
| A                      | $A\toE$                                  |
| <u>E</u>               | E  ightarrow T E'                        |
| <u>T</u> E'            | $T \to F T'$                             |
| <u>F</u> T' E'         | $F \to n$                                |
| n <u>T'</u> E'         | $T' 	o \epsilon$                         |
| n <u>E'</u>            | ${\sf E}'  ightarrow + {\sf T} {\sf E}'$ |
| n + <u>T</u> E'        | $T \to F T'$                             |
| n + <u>F</u> T' E'     | $F \to n$                                |
| n + n <u>T'</u> E'     | T'  ightarrow * F T'                     |
| n + n * <u>F</u> T' E' |                                          |

| Working string         | Production                               |
|------------------------|------------------------------------------|
| A                      | $A\toE$                                  |
| <u>E</u>               | E  ightarrow T E'                        |
| <u>T</u> E'            | $T\toF\;T'$                              |
| <u>F</u> T' E'         | $F \to n$                                |
| n <u>T'</u> E'         | $T' 	o \epsilon$                         |
| n <u>E'</u>            | ${\sf E}'  ightarrow + {\sf T} {\sf E}'$ |
| n + <u>T</u> E'        | $T \to F T'$                             |
| n + <u>F</u> T' E'     | $F \to n$                                |
| n + n <u>T'</u> E'     | $T' \to \texttt{*} F T'$                 |
| n + n * <u>F</u> T' E' | $F \to n$                                |
| n + n * n <u>T'</u> E' |                                          |

| Working string         | Production                               |
|------------------------|------------------------------------------|
| A                      | $A \to E$                                |
| <u>E</u>               | E  ightarrow T E'                        |
| <u>T</u> E'            | $T \to F T'$                             |
| <u>F</u> T' E'         | $F \to n$                                |
| n <u>T'</u> E'         | $T' \to \epsilon$                        |
| n <u>E'</u>            | ${\sf E'}  ightarrow + {\sf T} {\sf E'}$ |
| n + <u>T</u> E'        | $T \to F T'$                             |
| n + <u>F</u> T' E'     | $F \to n$                                |
| n + n <u>T'</u> E'     | T'  ightarrow * F T'                     |
| n + n * <u>F</u> T' E' | $F \to n$                                |
| n + n * n <u>T'</u> E' | $T' 	o \epsilon$                         |
| n + n * n <u>E'</u>    |                                          |

| Working string         | Production                               |
|------------------------|------------------------------------------|
| A                      | $A\toE$                                  |
| E                      | E  ightarrow T E'                        |
| <u>T</u> E'            | $T\toF\;T'$                              |
| <u>F</u> T' E'         | $F \to n$                                |
| n <u>T'</u> E'         | $T' \to \epsilon$                        |
| n <u>E'</u>            | ${\sf E}'  ightarrow + {\sf T} {\sf E}'$ |
| n + <u>T</u> E'        | $T \to F T'$                             |
| n + <u>F</u> T' E'     | $F \to n$                                |
| n + n <u>T'</u> E'     | T'  ightarrow * F T'                     |
| n + n * <u>F</u> T' E' | $F \to n$                                |
| n + n * n <u>T'</u> E' | $T' \to \epsilon$                        |
| n + n * n <u>E'</u>    | $E' \to \epsilon$                        |
| n + n * n              |                                          |

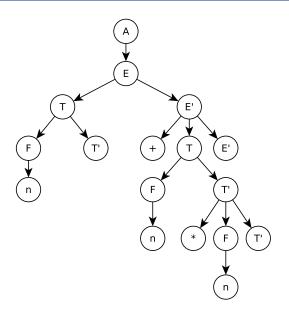


## Example parse tree

| Working string         | Production                               |
|------------------------|------------------------------------------|
| A                      | $A\toE$                                  |
| <u>E</u>               | E  ightarrow T E'                        |
| <u>T</u> E'            | $T\toF\;T'$                              |
| <u>F</u> T' E'         | $F \to n$                                |
| n <u>T'</u> E'         | $T' \to \epsilon$                        |
| n <u>E'</u>            | ${\sf E}'  ightarrow + {\sf T} {\sf E}'$ |
| n + <u>T</u> E'        | $T \to F T'$                             |
| n + <u>F</u> T' E'     | $F \to n$                                |
| n + n <u>T'</u> E'     | T'  ightarrow * F T'                     |
| n + n * <u>F</u> T' E' | $F \to n$                                |
| n + n * n <u>T'</u> E' | $T' 	o \epsilon$                         |
| n + n * n <u>E'</u>    | $E' 	o \epsilon$                         |
| n + n * n              |                                          |

## Example parse tree

| Working string      | Production           |
|---------------------|----------------------|
| A                   | $A\toE$              |
| E                   | E  ightarrow T E'    |
| <u>T</u> E'         | $T\toF\;T'$          |
| <u>F</u> T' E'      | $F \to n$            |
| n <u>T'</u> E'      | $T' \to \epsilon$    |
| n <u>E'</u>         | E'  ightarrow + T E' |
| n + T E'            | $T \to F T'$         |
| n + FT'E'           | $F \to n$            |
| n + n T' E'         | T'  ightarrow * F T' |
| n + n + F T' E'     | $F \to n$            |
| n + n * n T' E'     | $T' \to \epsilon$    |
| n + n * n <u>E'</u> | $E' \to \epsilon$    |
| n + n * n           |                      |



- Operator precedence is preserved
- Operator associativity is **not** preserved
  - ► All infix operators become (effectively) right-associative

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

- Operators end up in strange places in the parse tree
  - Makes the parse tree a bit difficult to reason about

# Precedence climbing

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ < ○

After applying the left recursion elimination refactoring to the productions for additive (+, -) operators:

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ◆○◆

What this means:

After applying the left recursion elimination refactoring to the productions for additive (+, -) operators:

Productions:  $E \rightarrow T E'$  $E' \rightarrow + T E'$  $E' \rightarrow - T E'$  $E' \rightarrow \epsilon$ 

What this means:

An additive expression (E) is

- a single term (T, expression with only multiplicative or higher-precedence operators),
- followed by 0 or more pairs of additive operator and term

All infix expressions have the form (X=operand,  $\oplus=operator)$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $X \oplus X$  $X \oplus X \oplus X \oplus X$ *etc...* 

```
All infix expressions have the form (X=operand, \oplus=operator)

X

X \oplus X
```

```
X ⊕ X ⊕ X
etc...
Rather than using a general purpose parsing technique (recursive descent following the productions of a context-free grammar) to parse infix
```

expressions, we could use a *specialized* parsing algorithm optimized for the structure of infix expressions

*Precedence climbing* is a specialized algorithm for parsing infix expressions:

- Arbitrary operators and precedence levels
- Arbitrary associativity (left and right)

One very nice feature of recursive descent parsing is that it is easy to embed specialized parsing algorithms (such as precedence climbing)

I.e., when the recursive descent parser needs to parse an infix expression, it invokes the precedence climbing parser

 Precedence climbing parser returns control after it has parsed one expression

```
parse_expression()
```

```
return parse_expression_1(parse_primary(), 0)
```

Source: https://en.wikipedia.org/wiki/Operator-precedence\_parser

#### Precedence climbing algorithm

```
parse expression 1(lhs, min precedence)
    lookahead := peek next token
    while lookahead is a binary operator whose precedence is >= min_precedence
        op := lookahead
        advance to next token
        rhs := parse_primary ()
        lookahead := peek next token
        while lookahead is a binary operator whose precedence is greater
                 than op's, or a right-associative operator
                 whose precedence is equal to op's
            rhs := parse_expression_1 (rhs, lookahead's precedence)
            lookahead := peek next token
        lhs := the result of applying op with operands lhs and rhs
    return lhs
```

Source: https://en.wikipedia.org/wiki/Operator-precedence\_parser

Assume that the goal is to build a tree to represent the parsed expression

- parse\_primary parses a primary expression (i.e., an operand)
  - In our grammar, an occurrence of the F nonterminal is a primary expression
- Recursive calls handle higher-precedence operators, or right-associative operators at the same precedence level
  - These will create subtrees
- In the case of a series of left-associative operators at the same precedence level, tree will grow to the left

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Precedence climbing (like recursive descent) is a predictive parsing algorithm, so is guided by the lexer

Main concern is to determine whether the lookahead token is an operator

► Also, if a token is an operator, what is its precedence and associativity

### Parsing languages with infix expressions

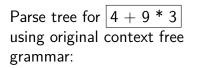
- Many programming languages use infix expressions for expressing numeric computations
- One approach (which tends to work well in practice):
  - Use a context-free grammar to describe all syntactic constructs other than infix expressions

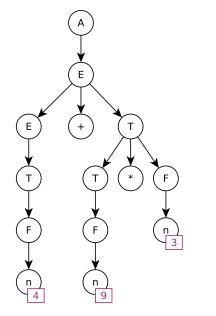
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Avoid left recursion
- Use recursive descent for parsing all constructs other than infix expressions
- Use precedence climbing for infix expressions

## Abstract syntax trees

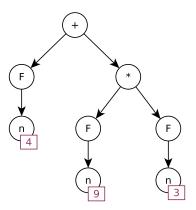
◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○





◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ◇◇◇

Parse tree for 4 + 9 \* 3 using precedence climbing (we're assuming that primary expressions are parsed using the parse function for the F nonterminal):



#### Precedence climbing produces trees in which

- leaf nodes are primary expressions
- interior nodes are operators
- ► This type of representation is called an *abstract syntax tree*, or "AST"
- ► This is a useful representation of code!
  - ASTs are essentially parse trees where all unnecessary constructs have been eliminated

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Precedence climbing automatically produces an AST-like representation
- ► For more general parsers:
  - Parse tree could be transformed into an AST
  - The parser could create an AST directly, skipping the creation of a full parse tree

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

# Supporting parenthesized expressions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 For languages using infix expressions, we will want to allow parentheses to explicitly force the order of evaluation

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

- E.g., in |(4 + 9) \* 3|, the + is done before the \*
- This is super easy to support!
- Idea: a parenthesized expression is a kind of primary expression

In our example grammar, the F nonterminal ("factor") represents a primary expression

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 $\begin{array}{lll} \mbox{Productions:} & \mbox{F} \rightarrow i \\ & \mbox{F} \rightarrow n \end{array}$ 

Add an additional production:

 $F \rightarrow (E)$ 

Note that E is an arbitrary infix expression