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Where are we (and why)?

Local Register Allocation

• Chapter 13 in EAC covers Register Allocation
— Read Sections 13.1, 13.2, & 13.3

— Look at questions 1 and 2 in the exercises for Chapter 13

• Read Chapter 1 (for context) , look at Appendix A (for ILOC )

• Lab specs are on the class website
— http://www.clear.rice.edu/comp412

Why are we here?

• Making time for scanning and parsing

• Providing implicit motivation for the start of the course

• And, allocation is both challenging and fun …

Now, back to the lecture
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Register Allocation

Part of the compiler’s back end

Critical properties

• Produce correct code that uses no more than k registers

• Minimize added work from loads and stores that spill values

• Minimize space used to hold spilled values

• Operate efficiently 
O(n), O(n log2n), maybe O(n2), but not O(2n)

Errors

IR Register

Allocation

Instruction

Selection

Machine

code

Instruction

Scheduling

m register

IR

k register

IR

Notation: The literature on register allocation 
consistently uses k as the number of registers 
available on the target system.
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Register Allocation

Consider a fragment of assembly code (or ILOC)

loadI 2  r1 // r1  2
loadAI r0, @b  r2 // r2  b
mult r1, r2  r3 // r3  2 · b
loadAI r0, @a  r4 // r4 a
sub  r4, r3  r5 // r5  a – (2 · b)

The Problem

• At each instruction, decide which values to keep in registers
— Note: each pseudo-register in the example is a value

• Simple if  |values| ≤ |registers|

• Harder if |values| > |registers|

• The compiler must automate this process

From the allocation 
perspective, these 
registers are virtual 
or pseudo-registers

r0 holds base address for local variables

@x is constant offset of x from r0
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The Task

• At each point in the code, pick the values to keep in registers

• Insert code to move values between registers & memory
— No transformations (leave that to optimization & scheduling)

• Minimize inserted code — both dynamic & static measures

• Make good use of any extra registers  

Allocation versus assignment

• Allocation is deciding which values to keep in registers

• Assignment is choosing specific registers for values

• This distinction is often lost in the literature 

The compiler must perform both allocation & assignment

Register Allocation

and your lab

For straight-line code, 
dynamic ≅ static
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Basic Blocks in Assembly Code (or ILOC)

Definition
— A basic block is a maximal length segment of straight-line 

(i.e., branch free) code

Importance  

• Strongest facts are provable for branch-free code

• If any statement executes, they all execute 

• Execution is totally ordered 

Role of Basic Blocks in Optimization

• Many techniques for improving basic blocks

• Simplest problems

• Strongest methods

Ignore, for the 
moment, exceptions
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Local Register Allocation

• What is “local” ? (different from “regional” or “global”)

— A local transformation operates on basic blocks

— Many optimizations are done on a local scale or scope

• Does local allocation solve the problem?
— It produces good register use inside a block

— Inefficiencies can arise at boundaries between blocks

— Your lab assumes that the block is the entire program
• Assumption significantly simplifies allocation

• How many passes can the allocator make?
— This is an off-line problem

— As many passes as it takes, within reason
• You can do a fine job in a couple of passes

Blocks in a Control-
flow Graph (CFG)



Comp 412, Fall 2010 8

Register Allocation

Optimal register allocation is hard

Real compilers face real problems

Local Allocation

• Simplified cases   O(n)

• Real cases  NP-Complete

Global Allocation

• NP-Complete for 1 register

• NP-Complete for k registers

(most sub-problems are NPC, too)

Local Assignment

• Single size, no spilling  O(n)

• Two sizes  NP-Complete

Global Assignment

• NP-Complete

Recent Results:

Optimal allocation on a procedure in 
SSA Form can be done in low-order 
polynomial time.

This result does not solve the entire 
problem, but it does offer insight into 
the structure of the problem & where 
the complexity lies.

We will come back to this issue later.
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Your lab will do register allocation on basic blocks in “ILOC”

• Pseudo-code for a simple, abstracted RISC machine
— generated by the instruction selection process

• Simple, compact data structures
• You will use a tiny subset of ILOC

ILOC is described in Appendix A of  EAC

The subset used in lab 1 & 3 is described in the lab handout and on the 
last slide of this lecture

ILOC

ILOC:

• simple three-address code

• RISC-like addressing modes

→ I, AI, AO

• unlimited virtual registers

loadI 2  r1

loadAI r0, @b  r2

add r1, r2  r3

loadAI r0, @a  r4

sub r4, r3  r5

a – 2 x b
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Your lab will do register allocation on basic blocks in “ILOC”

• Pseudo-code for a simple, abstracted RISC machine
— generated by the instruction selection process

• Simple, compact data structures
• You will use a tiny subset of ILOC

ILOC is described in Appendix A of  EAC

The subset used in lab 1 & 3 is described in the lab handout

ILOC

Quadruples:

• table of k x 4 small integers

• simple record structure

• easy to reorder

• all names are explicit

loadI 2 r1

loadAI r0 @b r2

add r1 r2 r3

loadAI r0 @a r4

sub r4 r3 r5

a – 2 x b



Observations

The Register Allocator does not need to “understand” the code

• It needs to distinguish definitions from uses

— Definitions might need to store a spilled value

— Uses might need to load a spilled value

• ILOC makes definitions and uses pretty clear

— The assignment arrow, , separates uses from definitions

• Except on the store operation, which uses all its register operands

— That is the point of the arrow!

• Your allocator needs to know, by opcode, how many 
definitions and how many uses it should see

— Beyond that, the meaning of the ILOC is somewhat irrelevant 
to the allocator

Comp 412, Fall 2010 11
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A value is live between its definition and its uses

• Find definitions (x  …) and uses (y  … x ...)

• From definition to last use is its live range
— How does a second definition affect this?

• Can represent live range as an interval [i,j]   (in block)

Let MAXLIVE be the maximum, over each instruction i in the 
block, of the number of values (pseudo-registers) live at i. 

• If MAXLIVE ≤ k, allocation should be easy

• If MAXLIVE ≤ k, no need to reserve F registers for spilling

• If MAXLIVE > k, some values must be spilled to memory 

• If MAXLIVE > k, need to reserve F registers for spilling

Finding live ranges is harder in the global case

Observations
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Concrete Example of MAXLIVE

Sample code sequence

loadI 1028  r1 // r1  1028  
load r1  r2 // r2  MEM(r1) 
mult r1, r2  r3 // r3  1028 · y
load x  r4 // r4 x
sub  r4, r2  r5 // r5  x – y
load z  r6 // r6  z
mult r5, r6  r7 // r7  z · (x – y)
sub  r7, r3  r8 // r5  z · (x – y) – (1028 · y)
store r8  r1 // MEM(r1)  z · (x – y) – (1028 · y)

The code uses 1028 as both the address of y and as a constant in the computation.  

The intent is to create a long live range for pedagogical purposes. Remember, the 
allocator does not need to understand the computation. It just needs to preserve 
the computation.

Store uses this register & 
defines a memory location.
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Concrete Example of MAXLIVE

Live ranges in the example

loadI 1028  r1 // r1
load r1  r2 // r1 r2 
mult r1, r2  r3 // r1 r2 r3
load x  r4 // r1 r2 r3 r4
sub  r4, r2  r5 // r1 r3 r5
load z  r6 // r1 r3 r5 r6
mult r5, r6  r7 // r1 r3 r7
sub  r7, r3  r8 // r1 r8
store r8  r1 //

A pseudo-register is live 
after an operation if it has 
been defined & has a use 
in the future
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Concrete Example of MAXLIVE

Live ranges in the example

loadI 1028  r1 // r1
load r1  r2 // r1 r2 
mult r1, r2  r3 // r1 r2 r3
load x  r4 // r1 r2 r3 r4
sub  r4, r2  r5 // r1 r3 r5
load z  r6 // r1 r3 r5 r6
mult r5, r6  r7 // r1 r3 r7
sub  r7, r3  r8 // r1 r8
store r8  r1 //

Compute these “live” sets in a backward 
pass over the code.
Start with live as the empty set.
At each op, remove target & add 
operands

MAXLIVE is 4

Remember, r1 is a use, 
not a definition 
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Top-down Versus Bottom-up Allocation

Top-down allocator

• Work from external notion of what is important

• Assign registers in priority order

• Save some registers for the values relegated to memory

Bottom-up allocator

• Work from detailed knowledge about problem instance

• Incorporate knowledge of partial solution at each step

• Handle all values uniformly

You will implement one of each
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Top-down Allocator

The idea

• Keep busiest values in a register

• Reserve registers for use in spills, say r registers

Algorithm

• Rank values by number of occurrences

• Allocate first k – r values to registers

• Rewrite code to reflect these choices

Programmers applied this idea by hand in  the 70’s & early 80’s

• C’s register declaration

You will implement a variant   (see Chapter 13, Question 1)

Move values with no 
register into memory

(add LOADs & STOREs)
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Top-down Allocator

How many registers must the allocator reserve?

• Need registers to compute spill addresses & load values

• Number depends on target architecture
— Typically, must be able to load 2 values

• Reserve these registers for spilling

What if  k – r  < |values|  <  k ?

• Remember that the underlying problem is NP-Complete

• The allocator can either 
— Check for this situation

— Adopt a more complex strategy                               (iterate?)

— Accept the fact that the technique is an approximation



Comp 412, Fall 2010 19

Back to the Example

Top down (3 registers, need 2 for operands)

loadI 1028  r1 // r1
load r1  r2 // r1 r2 
mult r1, r2  r3 // r1 r2 r3
load x  r4 // r1 r2 r3 r4
sub  r4, r2  r5 // r1 r3 r5
load z  r6 // r1 r3 r5 r6
mult r5, r6  r7 // r1 r3 r7
sub  r7, r3  r8 // r1 r8
store r8  r1 //

Note that this assumes that no extra register is needed for spilling 
(Absolute location for each register — use load and store immediate)

r1 is used more 
often than r3
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Back to the Example

Top down (3 registers, need 2 for operands)

loadI 1028  r1 // r1
load r1  r2 // r1 r2 
mult r1, r2  r3 // r1 r2 r3
load x  r4 // r1 r2 r3 r4
sub  r4, r2  r5 // r1 r3 r5
load z  r6 // r1 r3 r5 r6
mult r5, r6  r7 // r1 r3 r7
sub  r7, r3  r8 // r1 r8
store r8  r1 //

Note that this assumes that no extra register is needed for spilling 
(Absolute location for each register — use load and store immediate)

spill r3

restore r3

r1 is used more 
often than r3
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An Example

Top down (3 registers, need 2 for operands)

loadI 1028  r1 // r1
load r1  r2 // r1 r2 
mult r1, r2  r3 // r1 r2 r3
spill          r3       16     // r1 r2
load x  r4 // r1 r2 r4
sub  r4, r2  r5 // r1 r5
load z  r6 // r1 r5 r6
mult r5, r6  r7 // r1 r7
restore    16  r3     // r1      r3               r7
sub  r7, r3  r8 // r1 r8
store r8  r1 //

r3 becomes two 
minimal live ranges …

not an 
ILOC op.

“spill” and “restore” become stores and loads
• In practice, relative to rarp (r0 in this lecture)
• In lab 1, to absolute addresses between 0 and 1023
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An Example

Top down (3 registers, need 2 for operands)

loadI 1028  r1 // r1
load r1  r2 // r1 r2 
mult r1, r2  r3 // r1 r2 r3
spill          r3       16     // r1 r2
load x  r4 // r1 r2 r4
sub  r4, r2  r5 // r1 r5
load z  r6 // r1 r5 r6
mult r5, r6  r7 // r1 r7
restore    16  r3     // r1       r3 r7
sub  r7, r3  r8 // r1 r8
store r8  r1 //

The two short versions of r3 each overlap with fewer values, which 
simplifies the allocation problem.  Such “spilling” will (eventually) 
create a code where the allocator can succeed.

r3 becomes two 
minimal live ranges …

At most 3 
values live at 

each point
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An Example

Top down (3 registers, need 2 for operands)

loadI 1028  r1 // r1
load r1  r2 // r1 r2 
mult r1, r2  r3 // r1 r2 r3
spill          r3       16     // r1 r2
loadI x  r4 // r1 r2 r4
sub  r4, r2  r5 // r1 r5
loadI z  r6 // r1 r5 r6
mult r5, r6  r7 // r1 r7
restore    16  r3     // r1       r3 r7
sub  r7, r3  r8 // r1 r8
store r8  r1 //

This code is slower than the original, but it works correctly on a 
target machine with only three (available) registers.
Correctness is a virtue.

2 more 
ops

possible delay
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Bottom-up Allocator

The idea:

• Focus on replacement rather than allocation

• Keep values used “soon” in registers

Algorithm:

• Start with empty register set

• Load on demand

• When no register is available, free one

Replacement:

• Spill the value whose next use is farthest in the future

• Prefer clean value to dirty value

• Sound familiar?  Think page replacement ...



Comp 412, Fall 2010 25

Bottom-up Allocator

The algorithm should sound familiar

Decade algorithm

• Sheldon Best, 1955, for Fortran I

• Laslo Belady, 1965, for paging studies

• William Harrison, 1975, in ECS compiler work

• Chris Fraser, 1989, in the LCC compiler

• Forgotten student, 1995, COMP 412 at Rice

• Vincenzo Liberatore, 1997, Rutgers

• It will be reinvented again

• Many authors have argued for its optimality (wrong)
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An Example

Bottom up (3 registers; need 2 for operands)

loadI 1028  r1 // r1
load r1  r2 // r1 r2 
mult r1, r2  r3 // r1 r2 r3
loadI x  r4 // r1 r2 r3 r4
sub  r4, r2  r5 // r1 r3 r5
loadI z  r6 // r1 r3 r5 r6
mult r5, r6  r7 // r1 r3 r7
sub  r7, r3  r8 // r1 r8
store r8  r1 //

Note that this assumes that no extra register is needed for spilling 
(Absolute location for each register — use load and store immediate)

All registers are 
used at this point
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An Example

Bottom up (3 registers; need 2 for operands)

loadI 1028  r1 // r1
load r1  r2 // r1 r2 
mult r1, r2  r3 // r1 r2 r3
loadI x  r4 // r1 r2 r3 r4
sub  r4, r2  r5 // r1 r3 r5
loadI z  r6 // r1 r3 r5 r6
mult r5, r6  r7 // r1 r3 r7
sub  r7, r3  r8 // r1 r8
store r8  r1 //

spill r1

restore r1

Note that this assumes that no extra register is needed for spilling 
(Absolute location for each register — use load and store immediate)
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An Example

Bottom up (3 registers; need 2 for operands)

loadI 1028  r1 // r1
load r1  r2 // r1 r2 
mult r1, r2  r3 // r1 r2 r3
spill r1  20     //     r2 r3
loadI x  r4 // r2 r3 r4
sub  r4, r2  r5 //  r3 r5
loadI z  r6 // r3 r5 r6
mult r5, r6  r7 // r3 r7
sub  r7, r3  r8 // r8
restore    20  r1 // r1                              r8
store r8  r1 //

At most 3 
values live at 

each point

The two short versions of r1 each overlap with fewer values, which 
simplifies the allocation problem.  Such “spilling” will (eventually) 
create a code where the allocator can succeed.
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Lab One

Your Task

• Implement a version of the top-down allocator  
(See EaC Section 13.3.1 & Exercise 2a, Section 13.3)

• Implement a version of the bottom-up allocator
(See EaC Section 13.3.2)

• Run them on a collection of test blocks

• Write up a report 
— Describe the experience 

— Compare the two allocators

Due date:          Wednesday, September 15, 2010, 11:59 PM

Documentation: Friday, September 19, 2010, 11:59 PM

Test & report blocks are available on the web site
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Live Ranges                    (a somewhat subtle point)

Your allocator is not bound by the names used in its input

• Every computed value is part of some live range
— Even if it has no name in the source code   (e.g., 2 * y in x - 2 * y)

• A live range usually has a single name, such as r17

• A single name with multiple values can be renamed into 
distinct live ranges
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Live Ranges                       (From Figure 13.3 in EaC)

Operation Live Ranges

loadI @base  rarp none

loadAI rarp, @a  ra rarp,ra

loadI 2  r2 rarp,ra ,r2

loadAI rarp, @b  rb rarp,ra ,r2

loadAI rarp, @c  rc rarp,ra ,rb ,r2

loadAI rarp, @d  rd rarp,ra ,rc ,rb ,r2

mult ra, r2  ra rarp,ra ,rd ,rc ,rb,r2

mult ra, rb  ra rarp,ra ,rd ,rc,rb

mult ra, rc  ra rarp,ra,rd,rc

mult ra, rd  ra rarp,ra,rd

storeAI ra  rarp, @w

There are five distinct 
values, or live ranges, 
named ra

The last 4 fit in F.
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Live Ranges                    (a somewhat subtle point)

Your allocator is not bound by the names used in its input

• Every computed value is part of some live range
— Even if it has no name in the source code   (e.g., 2 * y in x - 2 * y)

• A live range usually has a single name, such as r17

• A single name with multiple values can be renamed into 
distinct live ranges

• Renaming distinct live ranges with distinct names can 
simplify the implementation of the allocator
— It can also help with debugging the allocator
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Lab One

ILOC subset:

These same operations, with different latencies, will appear in lab 3
Assume a register-to-register memory model, with 1 class of registers


