
Local Register Allocation & Lab 1
COMP 412

Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved.

Students enrolled in Comp 412 at Rice University have explicit permission to make copies
of these materials for their personal use.

Faculty from other educational institutions may use these materials for nonprofit
educational purposes, provided this copyright notice is preserved.

COMP 412

FALL 2010

Extra slides at the end
on live ranges may prove
helpful.

Comp 412, Fall 2010 2

Where are we (and why)?

Local Register Allocation

• Chapter 13 in EAC covers Register Allocation
— Read Sections 13.1, 13.2, & 13.3

— Look at questions 1 and 2 in the exercises for Chapter 13

• Read Chapter 1 (for context) , look at Appendix A (for ILOC)

• Lab specs are on the class website
— http://www.clear.rice.edu/comp412

Why are we here?

• Making time for scanning and parsing

• Providing implicit motivation for the start of the course

• And, allocation is both challenging and fun …

Now, back to the lecture

Comp 412, Fall 2010 3

Register Allocation

Part of the compiler’s back end

Critical properties

• Produce correct code that uses no more than k registers

• Minimize added work from loads and stores that spill values

• Minimize space used to hold spilled values

• Operate efficiently
O(n), O(n log2n), maybe O(n2), but not O(2n)

Errors

IR Register

Allocation

Instruction

Selection

Machine

code

Instruction

Scheduling

m register

IR

k register

IR

Notation: The literature on register allocation
consistently uses k as the number of registers
available on the target system.

Comp 412, Fall 2010 4

Register Allocation

Consider a fragment of assembly code (or ILOC)

loadI 2  r1 // r1  2
loadAI r0, @b  r2 // r2  b
mult r1, r2  r3 // r3  2 · b
loadAI r0, @a  r4 // r4 a
sub r4, r3  r5 // r5  a – (2 · b)

The Problem

• At each instruction, decide which values to keep in registers
— Note: each pseudo-register in the example is a value

• Simple if |values| ≤ |registers|

• Harder if |values| > |registers|

• The compiler must automate this process

From the allocation
perspective, these
registers are virtual
or pseudo-registers

r0 holds base address for local variables

@x is constant offset of x from r0

Comp 412, Fall 2010 5

The Task

• At each point in the code, pick the values to keep in registers

• Insert code to move values between registers & memory
— No transformations (leave that to optimization & scheduling)

• Minimize inserted code — both dynamic & static measures

• Make good use of any extra registers

Allocation versus assignment

• Allocation is deciding which values to keep in registers

• Assignment is choosing specific registers for values

• This distinction is often lost in the literature

The compiler must perform both allocation & assignment

Register Allocation

and your lab

For straight-line code,
dynamic ≅ static

Comp 412, Fall 2010 6

Basic Blocks in Assembly Code (or ILOC)

Definition
— A basic block is a maximal length segment of straight-line

(i.e., branch free) code

Importance

• Strongest facts are provable for branch-free code

• If any statement executes, they all execute

• Execution is totally ordered

Role of Basic Blocks in Optimization

• Many techniques for improving basic blocks

• Simplest problems

• Strongest methods

Ignore, for the
moment, exceptions

Comp 412, Fall 2010 7

Local Register Allocation

• What is “local” ? (different from “regional” or “global”)

— A local transformation operates on basic blocks

— Many optimizations are done on a local scale or scope

• Does local allocation solve the problem?
— It produces good register use inside a block

— Inefficiencies can arise at boundaries between blocks

— Your lab assumes that the block is the entire program
• Assumption significantly simplifies allocation

• How many passes can the allocator make?
— This is an off-line problem

— As many passes as it takes, within reason
• You can do a fine job in a couple of passes

Blocks in a Control-
flow Graph (CFG)

Comp 412, Fall 2010 8

Register Allocation

Optimal register allocation is hard

Real compilers face real problems

Local Allocation

• Simplified cases  O(n)

• Real cases  NP-Complete

Global Allocation

• NP-Complete for 1 register

• NP-Complete for k registers

(most sub-problems are NPC, too)

Local Assignment

• Single size, no spilling  O(n)

• Two sizes  NP-Complete

Global Assignment

• NP-Complete

Recent Results:

Optimal allocation on a procedure in
SSA Form can be done in low-order
polynomial time.

This result does not solve the entire
problem, but it does offer insight into
the structure of the problem & where
the complexity lies.

We will come back to this issue later.

Comp 412, Fall 2010 9

Your lab will do register allocation on basic blocks in “ILOC”

• Pseudo-code for a simple, abstracted RISC machine
— generated by the instruction selection process

• Simple, compact data structures
• You will use a tiny subset of ILOC

ILOC is described in Appendix A of EAC

The subset used in lab 1 & 3 is described in the lab handout and on the
last slide of this lecture

ILOC

ILOC:

• simple three-address code

• RISC-like addressing modes

→ I, AI, AO

• unlimited virtual registers

loadI 2  r1

loadAI r0, @b  r2

add r1, r2  r3

loadAI r0, @a  r4

sub r4, r3  r5

a – 2 x b

Comp 412, Fall 2010 10

Your lab will do register allocation on basic blocks in “ILOC”

• Pseudo-code for a simple, abstracted RISC machine
— generated by the instruction selection process

• Simple, compact data structures
• You will use a tiny subset of ILOC

ILOC is described in Appendix A of EAC

The subset used in lab 1 & 3 is described in the lab handout

ILOC

Quadruples:

• table of k x 4 small integers

• simple record structure

• easy to reorder

• all names are explicit

loadI 2 r1

loadAI r0 @b r2

add r1 r2 r3

loadAI r0 @a r4

sub r4 r3 r5

a – 2 x b

Observations

The Register Allocator does not need to “understand” the code

• It needs to distinguish definitions from uses

— Definitions might need to store a spilled value

— Uses might need to load a spilled value

• ILOC makes definitions and uses pretty clear

— The assignment arrow, , separates uses from definitions

• Except on the store operation, which uses all its register operands

— That is the point of the arrow!

• Your allocator needs to know, by opcode, how many
definitions and how many uses it should see

— Beyond that, the meaning of the ILOC is somewhat irrelevant
to the allocator

Comp 412, Fall 2010 11

Comp 412, Fall 2010 12

A value is live between its definition and its uses

• Find definitions (x  …) and uses (y  … x ...)

• From definition to last use is its live range
— How does a second definition affect this?

• Can represent live range as an interval [i,j] (in block)

Let MAXLIVE be the maximum, over each instruction i in the
block, of the number of values (pseudo-registers) live at i.

• If MAXLIVE ≤ k, allocation should be easy

• If MAXLIVE ≤ k, no need to reserve F registers for spilling

• If MAXLIVE > k, some values must be spilled to memory

• If MAXLIVE > k, need to reserve F registers for spilling

Finding live ranges is harder in the global case

Observations

Comp 412, Fall 2010 13

Concrete Example of MAXLIVE

Sample code sequence

loadI 1028  r1 // r1  1028
load r1  r2 // r2  MEM(r1)
mult r1, r2  r3 // r3  1028 · y
load x  r4 // r4 x
sub r4, r2  r5 // r5  x – y
load z  r6 // r6  z
mult r5, r6  r7 // r7  z · (x – y)
sub r7, r3  r8 // r5  z · (x – y) – (1028 · y)
store r8  r1 // MEM(r1)  z · (x – y) – (1028 · y)

The code uses 1028 as both the address of y and as a constant in the computation.

The intent is to create a long live range for pedagogical purposes. Remember, the
allocator does not need to understand the computation. It just needs to preserve
the computation.

Store uses this register &
defines a memory location.

Comp 412, Fall 2010 14

Concrete Example of MAXLIVE

Live ranges in the example

loadI 1028  r1 // r1
load r1  r2 // r1 r2
mult r1, r2  r3 // r1 r2 r3
load x  r4 // r1 r2 r3 r4
sub r4, r2  r5 // r1 r3 r5
load z  r6 // r1 r3 r5 r6
mult r5, r6  r7 // r1 r3 r7
sub r7, r3  r8 // r1 r8
store r8  r1 //

A pseudo-register is live
after an operation if it has
been defined & has a use
in the future

Comp 412, Fall 2010 15

Concrete Example of MAXLIVE

Live ranges in the example

loadI 1028  r1 // r1
load r1  r2 // r1 r2
mult r1, r2  r3 // r1 r2 r3
load x  r4 // r1 r2 r3 r4
sub r4, r2  r5 // r1 r3 r5
load z  r6 // r1 r3 r5 r6
mult r5, r6  r7 // r1 r3 r7
sub r7, r3  r8 // r1 r8
store r8  r1 //

Compute these “live” sets in a backward
pass over the code.
Start with live as the empty set.
At each op, remove target & add
operands

MAXLIVE is 4

Remember, r1 is a use,
not a definition

Comp 412, Fall 2010 16

Top-down Versus Bottom-up Allocation

Top-down allocator

• Work from external notion of what is important

• Assign registers in priority order

• Save some registers for the values relegated to memory

Bottom-up allocator

• Work from detailed knowledge about problem instance

• Incorporate knowledge of partial solution at each step

• Handle all values uniformly

You will implement one of each

Comp 412, Fall 2010 17

Top-down Allocator

The idea

• Keep busiest values in a register

• Reserve registers for use in spills, say r registers

Algorithm

• Rank values by number of occurrences

• Allocate first k – r values to registers

• Rewrite code to reflect these choices

Programmers applied this idea by hand in the 70’s & early 80’s

• C’s register declaration

You will implement a variant (see Chapter 13, Question 1)

Move values with no
register into memory

(add LOADs & STOREs)

Comp 412, Fall 2010 18

Top-down Allocator

How many registers must the allocator reserve?

• Need registers to compute spill addresses & load values

• Number depends on target architecture
— Typically, must be able to load 2 values

• Reserve these registers for spilling

What if k – r < |values| < k ?

• Remember that the underlying problem is NP-Complete

• The allocator can either
— Check for this situation

— Adopt a more complex strategy (iterate?)

— Accept the fact that the technique is an approximation

Comp 412, Fall 2010 19

Back to the Example

Top down (3 registers, need 2 for operands)

loadI 1028  r1 // r1
load r1  r2 // r1 r2
mult r1, r2  r3 // r1 r2 r3
load x  r4 // r1 r2 r3 r4
sub r4, r2  r5 // r1 r3 r5
load z  r6 // r1 r3 r5 r6
mult r5, r6  r7 // r1 r3 r7
sub r7, r3  r8 // r1 r8
store r8  r1 //

Note that this assumes that no extra register is needed for spilling
(Absolute location for each register — use load and store immediate)

r1 is used more
often than r3

Comp 412, Fall 2010 20

Back to the Example

Top down (3 registers, need 2 for operands)

loadI 1028  r1 // r1
load r1  r2 // r1 r2
mult r1, r2  r3 // r1 r2 r3
load x  r4 // r1 r2 r3 r4
sub r4, r2  r5 // r1 r3 r5
load z  r6 // r1 r3 r5 r6
mult r5, r6  r7 // r1 r3 r7
sub r7, r3  r8 // r1 r8
store r8  r1 //

Note that this assumes that no extra register is needed for spilling
(Absolute location for each register — use load and store immediate)

spill r3

restore r3

r1 is used more
often than r3

Comp 412, Fall 2010 21

An Example

Top down (3 registers, need 2 for operands)

loadI 1028  r1 // r1
load r1  r2 // r1 r2
mult r1, r2  r3 // r1 r2 r3
spill r3  16 // r1 r2
load x  r4 // r1 r2 r4
sub r4, r2  r5 // r1 r5
load z  r6 // r1 r5 r6
mult r5, r6  r7 // r1 r7
restore 16  r3 // r1 r3 r7
sub r7, r3  r8 // r1 r8
store r8  r1 //

r3 becomes two
minimal live ranges …

not an
ILOC op.

“spill” and “restore” become stores and loads
• In practice, relative to rarp (r0 in this lecture)
• In lab 1, to absolute addresses between 0 and 1023

Comp 412, Fall 2010 22

An Example

Top down (3 registers, need 2 for operands)

loadI 1028  r1 // r1
load r1  r2 // r1 r2
mult r1, r2  r3 // r1 r2 r3
spill r3  16 // r1 r2
load x  r4 // r1 r2 r4
sub r4, r2  r5 // r1 r5
load z  r6 // r1 r5 r6
mult r5, r6  r7 // r1 r7
restore 16  r3 // r1 r3 r7
sub r7, r3  r8 // r1 r8
store r8  r1 //

The two short versions of r3 each overlap with fewer values, which
simplifies the allocation problem. Such “spilling” will (eventually)
create a code where the allocator can succeed.

r3 becomes two
minimal live ranges …

At most 3
values live at

each point

Comp 412, Fall 2010 23

An Example

Top down (3 registers, need 2 for operands)

loadI 1028  r1 // r1
load r1  r2 // r1 r2
mult r1, r2  r3 // r1 r2 r3
spill r3  16 // r1 r2
loadI x  r4 // r1 r2 r4
sub r4, r2  r5 // r1 r5
loadI z  r6 // r1 r5 r6
mult r5, r6  r7 // r1 r7
restore 16  r3 // r1 r3 r7
sub r7, r3  r8 // r1 r8
store r8  r1 //

This code is slower than the original, but it works correctly on a
target machine with only three (available) registers.
Correctness is a virtue.

2 more
ops

possible delay

Comp 412, Fall 2010 24

Bottom-up Allocator

The idea:

• Focus on replacement rather than allocation

• Keep values used “soon” in registers

Algorithm:

• Start with empty register set

• Load on demand

• When no register is available, free one

Replacement:

• Spill the value whose next use is farthest in the future

• Prefer clean value to dirty value

• Sound familiar? Think page replacement ...

Comp 412, Fall 2010 25

Bottom-up Allocator

The algorithm should sound familiar

Decade algorithm

• Sheldon Best, 1955, for Fortran I

• Laslo Belady, 1965, for paging studies

• William Harrison, 1975, in ECS compiler work

• Chris Fraser, 1989, in the LCC compiler

• Forgotten student, 1995, COMP 412 at Rice

• Vincenzo Liberatore, 1997, Rutgers

• It will be reinvented again

• Many authors have argued for its optimality (wrong)

Comp 412, Fall 2010 26

An Example

Bottom up (3 registers; need 2 for operands)

loadI 1028  r1 // r1
load r1  r2 // r1 r2
mult r1, r2  r3 // r1 r2 r3
loadI x  r4 // r1 r2 r3 r4
sub r4, r2  r5 // r1 r3 r5
loadI z  r6 // r1 r3 r5 r6
mult r5, r6  r7 // r1 r3 r7
sub r7, r3  r8 // r1 r8
store r8  r1 //

Note that this assumes that no extra register is needed for spilling
(Absolute location for each register — use load and store immediate)

All registers are
used at this point

Comp 412, Fall 2010 27

An Example

Bottom up (3 registers; need 2 for operands)

loadI 1028  r1 // r1
load r1  r2 // r1 r2
mult r1, r2  r3 // r1 r2 r3
loadI x  r4 // r1 r2 r3 r4
sub r4, r2  r5 // r1 r3 r5
loadI z  r6 // r1 r3 r5 r6
mult r5, r6  r7 // r1 r3 r7
sub r7, r3  r8 // r1 r8
store r8  r1 //

spill r1

restore r1

Note that this assumes that no extra register is needed for spilling
(Absolute location for each register — use load and store immediate)

Comp 412, Fall 2010 28

An Example

Bottom up (3 registers; need 2 for operands)

loadI 1028  r1 // r1
load r1  r2 // r1 r2
mult r1, r2  r3 // r1 r2 r3
spill r1  20 // r2 r3
loadI x  r4 // r2 r3 r4
sub r4, r2  r5 // r3 r5
loadI z  r6 // r3 r5 r6
mult r5, r6  r7 // r3 r7
sub r7, r3  r8 // r8
restore 20  r1 // r1 r8
store r8  r1 //

At most 3
values live at

each point

The two short versions of r1 each overlap with fewer values, which
simplifies the allocation problem. Such “spilling” will (eventually)
create a code where the allocator can succeed.

Comp 412, Fall 2010 29

Lab One

Your Task

• Implement a version of the top-down allocator
(See EaC Section 13.3.1 & Exercise 2a, Section 13.3)

• Implement a version of the bottom-up allocator
(See EaC Section 13.3.2)

• Run them on a collection of test blocks

• Write up a report
— Describe the experience

— Compare the two allocators

Due date: Wednesday, September 15, 2010, 11:59 PM

Documentation: Friday, September 19, 2010, 11:59 PM

Test & report blocks are available on the web site

Comp 412, Fall 2010 30

Live Ranges (a somewhat subtle point)

Your allocator is not bound by the names used in its input

• Every computed value is part of some live range
— Even if it has no name in the source code (e.g., 2 * y in x - 2 * y)

• A live range usually has a single name, such as r17

• A single name with multiple values can be renamed into
distinct live ranges

Comp 412, Fall 2010 31

Live Ranges (From Figure 13.3 in EaC)

Operation Live Ranges

loadI @base  rarp none

loadAI rarp, @a  ra rarp,ra

loadI 2  r2 rarp,ra ,r2

loadAI rarp, @b  rb rarp,ra ,r2

loadAI rarp, @c  rc rarp,ra ,rb ,r2

loadAI rarp, @d  rd rarp,ra ,rc ,rb ,r2

mult ra, r2  ra rarp,ra ,rd ,rc ,rb,r2

mult ra, rb  ra rarp,ra ,rd ,rc,rb

mult ra, rc  ra rarp,ra,rd,rc

mult ra, rd  ra rarp,ra,rd

storeAI ra  rarp, @w

There are five distinct
values, or live ranges,
named ra

The last 4 fit in F.

Comp 412, Fall 2010 32

Live Ranges (a somewhat subtle point)

Your allocator is not bound by the names used in its input

• Every computed value is part of some live range
— Even if it has no name in the source code (e.g., 2 * y in x - 2 * y)

• A live range usually has a single name, such as r17

• A single name with multiple values can be renamed into
distinct live ranges

• Renaming distinct live ranges with distinct names can
simplify the implementation of the allocator
— It can also help with debugging the allocator

Comp 412, Fall 2010 33

Lab One

ILOC subset:

These same operations, with different latencies, will appear in lab 3
Assume a register-to-register memory model, with 1 class of registers

