
Introduction to Code Optimization

Comp 412

Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved.

Students enrolled in Comp 412 at Rice University have explicit permission to make copies
of these materials for their personal use.

Faculty from other educational institutions may use these materials for nonprofit
educational purposes, provided this copyright notice is preserved.

COMP 412
FALL 2010

This lecture begins
the material from
Chapter 8 of EaC

Comp 412, Fall 2010 2

Traditional Three-Phase Compiler

Optimization (or Code Improvement)

• Analyzes IR and rewrites (or transforms) IR

• Primary goal is to reduce running time of the compiled code

— May also improve space, power consumption, …

• Must preserve “meaning” of the code

— Measured by values of named variables

— A course (or two) unto itself

Errors

Source
Code Optimizer

Front
End

Machine
code

Back
End

IR IR

Comp 412, Fall 2010 3

The Optimizer

Typical Transformations

• Discover & propagate some constant value

• Move a computation to a less frequently executed place

• Specialize some computation based on context

• Discover a redundant computation & remove it

• Remove useless or unreachable code

• Encode an idiom in some particularly efficient form

Errors

Opt
1

Opt
3

Opt
2

Opt
n

...IR IR IR IR IR

Modern optimizers are structured as a series of passes

Comp 412, Fall 2010 4

The Role of the Optimizer

• The compiler can implement a procedure in many ways

• The optimizer tries to find an implementation that is “better”
— Speed, code size, data space, …

To accomplish this, it

• Analyzes the code to derive knowledge about run-time behavior
— Data-flow analysis, pointer disambiguation, …

— General term is “static analysis”

• Uses that knowledge in an attempt to improve the code
— Literally hundreds of transformations have been proposed

— Large amount of overlap between them

Nothing “optimal” about optimization

• Proofs of optimality assume restrictive & unrealistic conditions

Comp 412, Fall 2010 5

Redundancy Elimination as an Example

An expression x+y is redundant if and only if, along every
path from the procedure’s entry, it has been evaluated, and its
constituent subexpressions (x & y) have not been re-defined.

If the compiler can prove that an expression is redundant

• It can preserve the results of earlier evaluations

• It can replace the current evaluation with a reference

Two pieces to the problem

• Proving that x+y is redundant, or available

• Rewriting the code to eliminate the redundant evaluation

One technique for accomplishing both is called value numbering

Assume a low-level, linear IR such as ILOC

Comp 412, Fall 2010 6

Value Numbering

The key notion

• Assign an identifying number, V(n), to each expression
— V(x+y) = V(j) iff x+y and j always have the same value
— Use hashing over the value numbers to make it efficient

• Use these numbers to improve the code

Improving the code

• Replace redundant expressions
— Same VN ⇒ refer rather than recompute

• Simplify algebraic identities
• Discover constant-valued expressions, fold & propagate them

• Technique designed for low-level, linear IRs, similar methods
exist for trees (e.g., build a DAG)

Local algorithm due to Balke
(1968) or Ershov (1954)

Within a basic block;
definition becomes more
complex across blocks

Comp 412, Fall 2010 7

Local Value Numbering

The Algorithm

For each operation o = <operator, o1, o2> in the block, in order

1 Get value numbers for operands from hash lookup

2 Hash <operator,VN(o1),VN(o2)> to get a value number for o

3 If o already had a value number, replace o with a reference

4 If o1 & o2 are constant, evaluate it & replace with a loadI

If hashing behaves, the algorithm runs in linear time
— If not, use multi-set discriminationt or acyclic DFAstt

Handling algebraic identities

• Case statement on operator type

• Handle special cases within each operator

tsee p. 251 in EaC

ttDFAs for REs without closure can be
built online to provide a “perfect hash”

Comp 412, Fall 2010 8

Local Value Numbering

An example

With VNs

a3 ← x1 + y2

✶ b3 ← x1 + y2

a4 ← 17
✶ c3 ← x1 + y2

Rewritten

a3 ← x1 + y2

✶ b3 ← a3

a4 ← 17
✶ c3 ← a3 (oops!)

Options

• Use c3 ← b3

• Save a3 in t3

• Rename around it

Original Code
a ← x + y

✶ b ← x + y
a ← 17

✶ c ← x + y

Two redundancies

• Eliminate stmts
with a ✶

• Coalesce results ?

Comp 412, Fall 2010 9

Local Value Numbering

Example (continued):

With VNs

a0
3 ← x0

1 + y0
2

✶ b0
3 ← x0

1 + y0
2

a1
4 ← 17

✶ c0
3 ← x0

1 + y0
2

Notation:

• While complex,
the meaning is
clear

Original Code

a0 ← x0 + y0

✶ b0 ← x0 + y0

a1 ← 17

✶ c0 ← x0 + y0

Renaming:

• Give each value a
unique name

• Makes it clear

Rewritten

a0
3 ← x0

1 + y0
2

✶ b0
3 ← a0

3

a1
4 ← 17

✶ c0
3 ← a0

3

Result:

• a0
3 is available

• Rewriting now
works

Comp 412, Fall 2010 10

Local Value Numbering

The Algorithm

For each operation o = <operator, o1, o2> in the block, in order

1 Get value numbers for operands from hash lookup

2 Hash <operator,VN(o1),VN(o2)> to get a value number for o

3 If o already had a value number, replace o with a reference

4 If o1 & o2 are constant, evaluate it & replace with a loadI

Complexity & Speed Issues

• “Get value numbers” — linear search versus hash

• “Hash <op,VN(o1),VN(o2)>” — linear search versus hash

• Copy folding — set value number of result

• Commutative ops — double hash versus sorting the operands

asymptotic constants

Comp 412, Fall 2010 11

Simple Extensions to Value Numbering

Constant folding

• Add a bit that records when a value is constant

• Evaluate constant values at compile-time

• Replace with load immediate or immediate operand

• No stronger local algorithm

Algebraic identities

• Must check (many) special cases

• Replace result with input VN

• Build a decision tree on operation

Identities (on VNs)

x←y, x+0, x-0, x*1, x÷1, x-x, x*0,
x÷x, max(x,MAXINT), min(x,MININT),
max(x,x), min(y,y), and so on ...

Comp 412, Fall 2010

12

Missed opportunities

(need stronger methods)

m ← a + b

n ← a + b

A

p c + d

r ← c + d

B

y ← a + b

z ← c + d

G

q ← a + b

r ← c + d

C

e ← b + 18

s ← a + b

u ← e + f

D e ← a + 17

t ← c + d

u ← e + f

E

v ← a + b

w ← c + d

x ← e + f

F

Value Numbering

Local Value Numbering

• 1 block at a time

• Strong local results

• No cross-block effects

LVN finds these redundant ops

