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Traditional Three-Phase Compiler

Optimization (or Code Improvement)

• Analyzes IR and rewrites (or transforms) IR

• Primary goal is to reduce running time of the compiled code

— May also improve space, power consumption, …

• Must preserve “meaning” of the code

— Measured by values of named variables

— A course (or two) unto itself

Errors
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The Optimizer

Typical Transformations

• Discover & propagate some constant value

• Move a computation to a less frequently executed place

• Specialize some computation based on context

• Discover a redundant computation & remove it

• Remove useless or unreachable code

• Encode an idiom in some particularly efficient form

Errors
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Modern optimizers are structured as a series of passes
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The Role of the Optimizer

• The compiler can implement a procedure in many ways

• The optimizer tries to find an implementation that is “better”
— Speed, code size, data space, …

To accomplish this, it

• Analyzes the code to derive knowledge about run-time behavior
— Data-flow analysis, pointer disambiguation, …

— General term is “static analysis”

• Uses that knowledge in an attempt to improve the code
— Literally hundreds of transformations have been proposed

— Large amount of overlap between them

Nothing “optimal” about optimization

• Proofs of optimality assume restrictive & unrealistic conditions
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Redundancy Elimination as an Example

An expression x+y is redundant if and only if, along every
path from the procedure’s entry, it has been evaluated, and its 
constituent subexpressions (x & y) have not been re-defined.

If the compiler can prove that an expression is redundant

• It can preserve the results of earlier evaluations

• It can replace the current evaluation with a reference

Two pieces to the problem

• Proving that x+y is redundant, or available

• Rewriting the code to eliminate the redundant evaluation

One technique for accomplishing both is called value numbering

Assume a low-level, linear IR such as ILOC
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Value Numbering                        

The key notion

• Assign an identifying number, V(n), to each expression
— V(x+y) = V(j) iff x+y and j always have the same value
— Use hashing over the value numbers to make it efficient

• Use these numbers to improve the code

Improving the code

• Replace redundant expressions
— Same VN ⇒ refer rather than recompute

• Simplify algebraic identities
• Discover constant-valued expressions, fold & propagate them

• Technique designed for low-level, linear IRs, similar methods 
exist for trees (e.g., build a DAG)

Local algorithm due to Balke 
(1968) or Ershov (1954)

Within a basic block; 
definition becomes more 
complex across blocks
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Local Value Numbering

The Algorithm

For each operation o = <operator, o1, o2> in the block, in order

1 Get value numbers for operands from hash lookup

2 Hash <operator,VN(o1),VN(o2)> to get a value number for o

3 If o already had a value number, replace o with a reference

4 If o1 & o2 are constant, evaluate it & replace with a loadI

If hashing behaves, the algorithm runs in linear time
— If not, use multi-set discriminationt or acyclic DFAstt

Handling algebraic identities

• Case statement on operator type

• Handle special cases within each operator

tsee p. 251 in EaC

ttDFAs for REs without closure can be 
built online to provide a “perfect hash”



Comp 412, Fall 2010 8

Local Value Numbering

An example

With VNs

a3 ← x1 + y2

✶ b3 ← x1 + y2

a4 ← 17
✶ c3 ← x1 + y2

Rewritten

a3 ← x1 + y2

✶ b3 ← a3

a4 ← 17
✶ c3 ← a3 (oops!)

Options

• Use c3 ← b3

• Save a3 in t3

• Rename around it

Original Code
a ← x + y

✶ b ← x + y
a ← 17

✶ c ← x + y

Two redundancies

• Eliminate stmts
with a ✶

• Coalesce results ?
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Local Value Numbering

Example (continued):

With VNs

a0
3 ← x0

1 + y0
2

✶ b0
3 ← x0

1 + y0
2

a1
4 ← 17

✶ c0
3 ← x0

1 + y0
2

Notation:

• While complex, 
the meaning is 
clear

Original Code

a0 ← x0 + y0

✶ b0 ← x0 + y0

a1 ← 17

✶ c0 ← x0 + y0

Renaming:

• Give each value a 
unique name

• Makes it clear

Rewritten

a0
3 ← x0

1 + y0
2

✶ b0
3 ← a0

3

a1
4 ← 17

✶ c0
3 ← a0

3

Result:

• a0
3 is available

• Rewriting now 
works 
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Local Value Numbering

The Algorithm

For each operation o = <operator, o1, o2> in the block, in order

1 Get value numbers for operands from hash lookup

2 Hash <operator,VN(o1),VN(o2)> to get a value number for o

3 If o already had a value number, replace o with a reference

4 If o1 & o2 are constant, evaluate it & replace with a loadI

Complexity & Speed Issues

• “Get value numbers” — linear search versus hash

• “Hash <op,VN(o1),VN(o2)>” — linear search versus hash

• Copy folding — set value number of result

• Commutative ops — double hash versus sorting the operands

asymptotic constants
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Simple Extensions to Value Numbering

Constant folding

• Add a bit that records when a value is constant

• Evaluate constant values at compile-time

• Replace with load immediate or immediate operand

• No stronger local algorithm

Algebraic identities

• Must check (many) special cases

• Replace result with input VN

• Build a decision tree on operation

Identities (on VNs)

x←y, x+0, x-0, x*1, x÷1, x-x, x*0, 
x÷x, max(x,MAXINT), min(x,MININT), 
max(x,x), min(y,y), and so on ...
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Missed opportunities

(need stronger methods)

m ← a + b

n ← a + b

A

p  c + d

r ← c + d

B

y ← a + b

z ← c + d

G

q ← a + b

r ← c + d

C

e ← b + 18

s ← a + b

u ← e + f

D e ← a + 17

t ← c + d

u ← e + f

E

v ← a + b

w ← c + d

x ← e + f

F

Value Numbering

Local Value Numbering

• 1 block at a time

• Strong local results

• No cross-block effects

LVN finds these redundant ops


