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The Story So Far …

Introduced scope of optimization

• Local — a single basic block

• Regional — a subset of the blocks in a procedure

• Global — an entire procedure 

• Whole Program — multiple procedures

Some example optimizations

• Local Value Numbering

• Superlocal Value Numbering

• Loop Unrolling

• Data-analysis & an application

• Procedure Placement
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Interprocedural

Intraprocedural



Finding Uninitialized Variables

We can use global data-flow analysis to find variables that 
might be used before they are ever defined

A variable v is live at point p iff ∃ a path in the CFG 
from p to a use of v along which v is not redefined.

Any variable that is live in the entry block of a procedure may 
be used before it is defined

• Represents a potential logic error in the code

• Compiler should discover and report this condition

We are looking at this issue because it gives us an opportunity 
to introduce the computation of liveness

• Compiler builds a CFG and computes LIVEOUT(n) ∀ node n

• LIVEOUT is a classic problem in data-flow analysis
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A Global Technique

Data-flow analysis is a form of compile-time 
reasoning about the runtime flow of values.



Live Variables

Data-flow problems are expressed with a set of simultaneous 
equations over sets associated with nodes in a graph

LIVEOUT(nf ) = ∅

LIVEOUT(n) = ∪m ∈succ(n) (UEVAR(m) ∪ (LIVEOUT(m) ∩ VARKILL(m)))

Where

• UEVAR(n) is the set of names used before being defined in the 
block that corresponds to node n in the CFG

• VARKILL(n) is the set of names defined in the block that 
corresponds to node n in the CFG

These equations annotate each CFG node n with a LIVEOUT set
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Live Variables

To compute live information for a procedure

• Build the CFG

• Compute UEVAR and VARKILL sets

• Use an iterative fixed-point solver to compute LiveOut sets
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N ← number of blocks

for i = 0 to N-1

LIVEOUT(i) ← ∅

changed ← true

while(changed)

changed ← false

for i ← 0 to N-1

recompute LIVEOUT(i)

if LIVEOUT(i) changed

then changed ← true

Iterative fixed-point solver

• LIVEOUT ⊆ 2Names

• UEVAR, VARKILL are constants

• Equation is monotone increasing

• Finite sets + monotone equations 
⇒ algorithm must halt

Theory of data-flow analysis 
assures us that this equation has a 
unique fixed point solution 

In EaC1e, see § 9.2.1; in EaC2e, see § 8.6.1



Live Variables

A couple more points

• Can use LIVEOUT sets to find uninitialized variables

— x ∈ LIVEOUT(n0 ) means x is uninitialized at some use

• Can use LIVEOUT sets to eliminate unnecessary stores

— Build LIVE at each operation

— x ∉ Live at a store means that the value is never reloaded

• The LIVEOUT equations have a unique fixed-point solution

⇒ The algorithm finds a fixed-point solution; since the fixed-point 
solution is unique, it finds the correct solution

• Order of computation determines speed of convergence

⇒ Choose an order that reaches fixed point quickly
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Data-Flow Analysis

The order of computation affects speed of convergence

• Live is a backward data-flow problem

— Sets for node n are computed from sets at n’s CFG successors
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Example CFG

LIVEOUT(1) is computed from LIVEOUT(2) and 
LIVEOUT(3), which depend on LIVEOUT(4)

• Solver should visit 2 & 3 before 1

• Solver should visit 4 before 2 & 3

• Update as many “sources” as possible 
before visiting a given node

General idea is to let a change in the LiveOut
set flow as far in the CFG as it can in a single 
“pass” of the while loop



Data-Flow Analysis

Code optimization is intimately tied to graph theory

• LIVEOUT is computed, conceptually, on the reverse CFG

• Order for solver is defined by the reverse CFG
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Reverse CFG

Propagation Order for Backward Problem

• Want to visit 4, then {2,3}, then 1

• PostOrder of RCFG would be 1, {2, 3}, 4

• Desired order is reverse of postorder

→ RPO(i) = |N | + 1 - PO(i)

• Reverse PostOrder would be 4, {3, 2}, 1

→ We don’t care about order of 2 & 3

Forward problem   ⇒ RPO on the CFG
Backward problem ⇒ RPO on the reverse CFG

RPO on RFG is not reverse preorder on CFG



Recap of Live Variables

Define the problem

A variable v is live at point p iff ∃ a path in the CFG 
from p to a use of v along which v is not redefined.

Solve the equations for LIVEOUT

LIVEOUT(nf ) = ∅

LIVEOUT(n) = ∪m ∈ succ(n) (UEVAR(m) ∪ (LIVEOUT(m) ∩ VARKILL(m)))

Use an iterative fixed-point solver

• Theory guarantees unique solution to this problem

• Choose an order that produces efficient solution

Use the sets to identify uninitialized variables, or to eliminate 
useless stores, or to find live ranges, or to …
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Chapter 9 of EaC contains more 
examples of data-flow problems

EaC1e has material 
on Live in § 9.2


