
Code Optimization, Part III
Global Methods

Comp 412

Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved.

Students enrolled in Comp 412 at Rice University have explicit permission to make copies
of these materials for their personal use.

Faculty from other educational institutions may use these materials for nonprofit
educational purposes, provided this copyright notice is preserved.

COMP 412
FALL 2010

The Story So Far …

Introduced scope of optimization

• Local — a single basic block

• Regional — a subset of the blocks in a procedure

• Global — an entire procedure

• Whole Program — multiple procedures

Some example optimizations

• Local Value Numbering

• Superlocal Value Numbering

• Loop Unrolling

• Data-analysis & an application

• Procedure Placement

Comp 412, Fall 2010 2

Interprocedural

Intraprocedural

Finding Uninitialized Variables

We can use global data-flow analysis to find variables that
might be used before they are ever defined

A variable v is live at point p iff ∃ a path in the CFG
from p to a use of v along which v is not redefined.

Any variable that is live in the entry block of a procedure may
be used before it is defined

• Represents a potential logic error in the code

• Compiler should discover and report this condition

We are looking at this issue because it gives us an opportunity
to introduce the computation of liveness

• Compiler builds a CFG and computes LIVEOUT(n) ∀ node n

• LIVEOUT is a classic problem in data-flow analysis

Comp 412, Fall 2010 3

A Global Technique

Data-flow analysis is a form of compile-time
reasoning about the runtime flow of values.

Live Variables

Data-flow problems are expressed with a set of simultaneous
equations over sets associated with nodes in a graph

LIVEOUT(nf) = ∅

LIVEOUT(n) = ∪m ∈succ(n) (UEVAR(m) ∪ (LIVEOUT(m) ∩ VARKILL(m)))

Where

• UEVAR(n) is the set of names used before being defined in the
block that corresponds to node n in the CFG

• VARKILL(n) is the set of names defined in the block that
corresponds to node n in the CFG

These equations annotate each CFG node n with a LIVEOUT set

Comp 412, Fall 2010 4

Live Variables

To compute live information for a procedure

• Build the CFG

• Compute UEVAR and VARKILL sets

• Use an iterative fixed-point solver to compute LiveOut sets

Comp 412, Fall 2010 5

N ← number of blocks

for i = 0 to N-1

LIVEOUT(i) ← ∅

changed ← true

while(changed)

changed ← false

for i ← 0 to N-1

recompute LIVEOUT(i)

if LIVEOUT(i) changed

then changed ← true

Iterative fixed-point solver

• LIVEOUT ⊆ 2Names

• UEVAR, VARKILL are constants

• Equation is monotone increasing

• Finite sets + monotone equations
⇒ algorithm must halt

Theory of data-flow analysis
assures us that this equation has a
unique fixed point solution

In EaC1e, see § 9.2.1; in EaC2e, see § 8.6.1

Live Variables

A couple more points

• Can use LIVEOUT sets to find uninitialized variables

— x ∈ LIVEOUT(n0) means x is uninitialized at some use

• Can use LIVEOUT sets to eliminate unnecessary stores

— Build LIVE at each operation

— x ∉ Live at a store means that the value is never reloaded

• The LIVEOUT equations have a unique fixed-point solution

⇒ The algorithm finds a fixed-point solution; since the fixed-point
solution is unique, it finds the correct solution

• Order of computation determines speed of convergence

⇒ Choose an order that reaches fixed point quickly

Comp 412, Fall 2010 6

Data-Flow Analysis

The order of computation affects speed of convergence

• Live is a backward data-flow problem

— Sets for node n are computed from sets at n’s CFG successors

Comp 412, Fall 2010 7

4

32

1

Example CFG

LIVEOUT(1) is computed from LIVEOUT(2) and
LIVEOUT(3), which depend on LIVEOUT(4)

• Solver should visit 2 & 3 before 1

• Solver should visit 4 before 2 & 3

• Update as many “sources” as possible
before visiting a given node

General idea is to let a change in the LiveOut
set flow as far in the CFG as it can in a single
“pass” of the while loop

Data-Flow Analysis

Code optimization is intimately tied to graph theory

• LIVEOUT is computed, conceptually, on the reverse CFG

• Order for solver is defined by the reverse CFG

Comp 412, Fall 2010 8

4

32

1

Reverse CFG

Propagation Order for Backward Problem

• Want to visit 4, then {2,3}, then 1

• PostOrder of RCFG would be 1, {2, 3}, 4

• Desired order is reverse of postorder

→ RPO(i) = |N | + 1 - PO(i)

• Reverse PostOrder would be 4, {3, 2}, 1

→ We don’t care about order of 2 & 3

Forward problem ⇒ RPO on the CFG
Backward problem ⇒ RPO on the reverse CFG

RPO on RFG is not reverse preorder on CFG

Recap of Live Variables

Define the problem

A variable v is live at point p iff ∃ a path in the CFG
from p to a use of v along which v is not redefined.

Solve the equations for LIVEOUT

LIVEOUT(nf) = ∅

LIVEOUT(n) = ∪m ∈ succ(n) (UEVAR(m) ∪ (LIVEOUT(m) ∩ VARKILL(m)))

Use an iterative fixed-point solver

• Theory guarantees unique solution to this problem

• Choose an order that produces efficient solution

Use the sets to identify uninitialized variables, or to eliminate
useless stores, or to find live ranges, or to …

Comp 412, Fall 2010 9
Chapter 9 of EaC contains more
examples of data-flow problems

EaC1e has material
on Live in § 9.2

