
Lecture 18: Low-level code generation

David Hovemeyer

November 2, 2022

601.428/628 Compilers and Interpreters

High-level code generation

These slides present a few thoughts/recommendations about low-level
(x86-64) code generation

Print comments as debugging output

Printing C-style /* comments */ is a really useful way to emit debugging
information in a way that won’t interfere with the generated code being
assembled

For example:
I Storage allocation decisions
I Computations involving memory layout

This technique is also useful for high-level code generation

Accessing memory in the stack frame

I Provided translations of enter and leave will (hopefully!) create
ABI-compliant stack frames

I Assume that N bytes of memory are reserved in the stack frame
I %rbp−N points to the “bottom” of the local memory area
I Assume that i is the offset of a local variable: it’s displacement from

%rbp should be N − i
I For example, if N = 32 and i = 0, use -32(%rbp) to access the memory

location

Allocating storage for virtual registers

I Each function will use a certain number of virtual registers as
I Storage for temporary (computed) values
I Storage for (some) scalar local variables

I Note that vr0 really means %rax and vr1, vr2, etc. are argument
registers (%rdi, %rsi, etc.)

I For Assignment 4: allocate each vreg (other than vr0 through vr9) in
memory in the stack frame
I This is in addition to the memory needed for local variables whose

storage is in memory
I Assignment 5: you can do local register allocation to promote some

virtual registers to CPU registers

Machine register sizes

I Each machine register has “subregisters” of various sizes
I These are specified as Operand::Kind values
I E.g., Operand(Operand::MREG32, MREG_RAX) represents the %eax

register (i.e., the 32-bit sub-register of %rax)
I The select_mreg_kind helper function assists in selecting the correct

machine register size

Instruction variants

I For instructions which move, compute, or compare values, there are
different variants for different operand sizes

I The select_ll_opcode assists in selecting the correct low-level opcode

Temporary machine registers

I You can use %r10 and %r11 (and sub-registers of %r10 and %r11) to
store temporary values

I Use for dealing with situations such as
I An x86-64 instruction can have at most one memory operand
I Some instructions doesn’t allow an immediate operand and a memory

operand

What if a virtual register is used as a pointer?

Your high-level code will probably have operands like (vr10), where a virtual
register (in this case vr10) is being used as a pointer to access a data value in
memory

Since virtual register values will be stored in memory, just referring to the
contents of the virtual register requires a memory reference (e.g.,
-24(%rbp)). How to dereference a pointer if the pointer is in memory?

Solution: copy the pointer to a machine register, e.g.:

movq -24(%rbp), %r11
...code can now use (%r11) to dereference the pointer...

Conditions/decisions

I The comparison instructions provided high-level opcodes yield a boolean
data value

I The cjmp_t and cjmp_f instructions consume this computed boolean
data value

I How to generate code?
I Use setxx instruction to use condition codes to set a boolean value in

an 8 bit register

Example of evaluating a condition, control flow

...code for lhs subexpression...

...code for rhs subexpression...

cmpl rhsval, lhsval
setl %r10b
cmpb $0, %r10b
je .Lsome_label

