Lecture 18: Low-level code generation

David Hovemeyer

November 2, 2022

601.428/628 Compilers and Interpreters

| -

B il!,’

High-level code generation

These slides present a few thoughts/recommendations about low-level
(x86-64) code generation

Print comments as debugging output

Printing C-style ‘/* comments */\ is a really useful way to emit debugging
information in a way that won't interfere with the generated code being
assembled

For example:
» Storage allocation decisions

» Computations involving memory layout

This technique is also useful for high-level code generation

Accessing memory in the stack frame

v

Provided translations of enter and leave will (hopefully!) create
ABIl-compliant stack frames

Assume that N bytes of memory are reserved in the stack frame
%rbp—N points to the “bottom” of the local memory area

Assume that i/ is the offset of a local variable: it's displacement from
%rbp should be N — i

For example, if N =32 and i = 0, use -32(%rbp) to access the memory
location

Allocating storage for virtual registers

» Each function will use a certain number of virtual registers as
» Storage for temporary (computed) values
» Storage for (some) scalar local variables

» Note that vr0 really means %rax and vrl, vr2, etc. are argument
registers (%rdi, %rsi, etc.)

» For Assignment 4: allocate each vreg (other than vrO through vr9) in
memory in the stack frame
» This is in addition to the memory needed for local variables whose

storage is in memory

» Assignment 5: you can do local register allocation to promote some
virtual registers to CPU registers

Machine register sizes

» Each machine register has “subregisters” of various sizes
» These are specified as Operand: :Kind values

» E.g., Operand(Operand: :MREG32, MREG_RAX) represents the %eax
register (i.e., the 32-bit sub-register of Yrax)

» The select_mreg kind helper function assists in selecting the correct
machine register size

Instruction variants

» For instructions which move, compute, or compare values, there are
different variants for different operand sizes

» The select_11 opcode assists in selecting the correct low-level opcode

Temporary machine registers

» You can use %r10 and %r11 (and sub-registers of %r10 and %r11) to
store temporary values
» Use for dealing with situations such as

» An x86-64 instruction can have at most one memory operand
» Some instructions doesn't allow an immediate operand and a memory
operand

What if a virtual register is used as a pointer?

Your high-level code will probably have operands like (vr10), where a virtual
register (in this case vr10) is being used as a pointer to access a data value in
memory

Since virtual register values will be stored in memory, just referring to the
contents of the virtual register requires a memory reference (e.g.,
-24(%rbp)). How to dereference a pointer if the pointer is in memory?

Solution: copy the pointer to a machine register, e.g.:

movq -24(%rbp), %ril
...code can now use (rll) to dereference the pointer...

Conditions/decisions

» The comparison instructions provided high-level opcodes yield a boolean
data value

» The cjmp_t and cjmp_£ instructions consume this computed boolean
data value
» How to generate code?

» Use setxx instruction to use condition codes to set a boolean value in
an 8 bit register

Example of evaluating a condition, control flow

...code for lhs subexpression...
...code for rhs subexpression...

cmpl rhsval, lhsval
setl %r10b

cmpb $0, %r10b

je .Lsome_label

(O <& <

Hao

(O <& <

Hao

(O <& <

Hao

(O <& <

Hao

(O <& <

Hao

