
Lecture 23: Static Analysis to Find Bugs

David Hovemeyer

November 30, 2022

601.428/628 Compilers and Interpreters

Bugs in Software

I Bugs in software are a significant problem
I 2018 estimate of annual cost to US economy: $2.84 trillion1

I Ways to find bugs before they enter production systems are needed
I What can we do?

1https://www.it-cisq.org/the-cost-of-poor-quality-software-in-the-us-a-2018-report/
The-Cost-of-Poor-Quality-Software-in-the-US-2018-Report.pdf

https://www.it-cisq.org/the-cost-of-poor-quality-software-in-the-us-a-2018-report/The-Cost-of-Poor-Quality-Software-in-the-US-2018-Report.pdf
https://www.it-cisq.org/the-cost-of-poor-quality-software-in-the-us-a-2018-report/The-Cost-of-Poor-Quality-Software-in-the-US-2018-Report.pdf

Testing

I Run the program, see if it behaves correctly
I Limitations:
I Error handling code is difficult to test
I Threading bugs can be very hard to reproduce
I Test scaffolding is time-consuming to create

Code inspection

I Manually examine source code, look for bugs
I Limitations:
I Labor intensive
I Subjective: source code might appear to be correct when it is is not
I Can you spot the typo in this slide?
I People have similar blind spots reading source code

Code inspection

I Manually examine source code, look for bugs
I Limitations:
I Labor intensive
I Subjective: source code might appear to be correct when it is is not
I Can you spot the typo in this slide?
I People have similar blind spots reading source code

Static analysis

I Idea: automated code inspection
I Use a program to analyze your program for bugs
I Analyze statements, control flow, method calls

I Advantages over testing and manual code inspection:
I Can analyze many potential program behaviors
I Doesn’t get bored
I Relatively objective

Limits of static analysis

I Nontrivial properties of programs are undecidable
“Does program P have bug X?”

≡ “Can program P reach state X?”
≡ Halting problem

I Static analysis can (in general) never be fully precise, so it must
approximate the behavior of the program

Approximating towards completeness

I We could design a bug-finding analysis so that it always overestimates
possible program behaviors
I Never misses a bug, but might report some false warnings

I Problem: the analysis may report so many false warnings that the real
bugs cannot be found!
I Trivial version: report a bug at every point in the program

Approximating towards soundness

I We could design a bug-finding analysis so that it always underestimates
possible program behaviors
I Never reports a false warning, but might miss some real bugs

I Problem: analysis may not find as many bugs as we would like
I Trivial version: never report any warnings

Heuristic analysis

I A static analysis to find bugs does not need to be consistent in its
approximations
I Neither complete nor sound: miss some real bugs, and report some

false warnings
I This gives the analysis the flexibility to estimate likely program behaviors
I May allow the analysis to be more precise in general

Practical issues

I Say your program has 100 real bugs
I Would you rather use
I A tool that finds all 100 bugs, but reports 1,000,000 warnings
I A tool that finds only 25 bugs, but reports 50 warnings

I Using a bug-finding tool must be a productive use of the developer’s time
I In general, no useful tool will find every bug

Bug patterns

Bug patterns

I Not all bugs are subtle and unique
I Many bugs share common characteristics
I A bug pattern is a code idiom that is usually a bug
I Detection of many bug patterns can be automated using simple analysis

techniques

The FindBugs tool

I FindBugs:
I Open source
I https://findbugs.sourceforge.net
I Implements detectors for 50+ bug patterns
I No longer maintained: successor project is

SpotBugs https://spotbugs.github.io/
I Analyzes Java bytecode
I Bytecode is the machine language for the Java

Virtual Machine
I Easier to analyze than source code

Null pointer bugs

Null pointer bugs

I In Java, a reference value can be null
I If such a reference is dereferenced, a NullPointerException is thrown
I Default behavior: the thread performing the operation is abruptly

terminated
I Examples of dereferences:
I Call an instance method (x.foo())
I Load a value from a field (sum += x.count)
I Store a value to a field (x.count = 42)
I Load a value from an array element (sum += x[i])
I Store a value to an array element (x[i] = 17)
I Check the length of an array (i < x.length)

Example null pointer bug

I Apache Ant 1.6.2,
org.apache.tools.ant.taskdefs.optional.metamata.MAudit

if (out == null) {
try {

out.close();
} catch (IOException e) {
}

}

Example null pointer bug

I Eclipse 3.0.1, org.eclipse.update.internal.core.ConfiguredSite

if (in == null)
try {

in.close();
} catch (IOException e1) {
}

Example null pointer bug

I Eclipse 3.0.1, org.eclipse.jdt.internal.debug.ui.JDIModelPresentation

if (sig != null || sig.length() == 1) {
return sig;

}

Example null pointer bug

I Eclipse 3.0.1, org.eclipse.jdt.internal.ui.compare.JavaStructureDiffViewer

Control c= getControl();
if (c == null && c.isDisposed())

return;

Example null pointer bug

I From JBoss 4.0.0RC1

public String getContentId()
String[] header = getMimeHeader("Content-Id");
String id = null;
if(header != null || header.length > 0)

id = header[0];
return id;

}

Null pointer dereferences

I Some null pointer deferences require sophisticated analysis to find
I Analyzing across method calls, modeling the contents of heap objects

I We have seen many examples of obvious null pointer dereferences
I Often arising from simple mistakes, such as using the wrong boolean

operator
I How can we construct an analysis to find obvious null pointer

dereferences?
I Values which are always null
I Values which were null on some control path

Dataflow analysis

I At each point in a method, keep track of dataflow facts
I E.g., which local variables and stack locations might contain null

I Symbolically execute the method:
I Model instructions
I Model control flow
I Iterate until a fixed point solution is reached

Dataflow values

I Model values of local variables
and stack operands using lattice
of symbolic values

I When to control paths merge,
use meet operator to combine
values
I This is the greatest lower

bound of the values

Meet example

Null � Null = Null

Meet example

Null � Not null = Maybe null

Null-pointer dataflow example

Null-pointer dataflow example

Null-pointer dataflow example

Null-pointer dataflow example

Null-pointer dataflow example

Null-pointer dataflow example

Null-pointer dataflow example

Null-pointer dataflow example

Null-pointer dataflow example

Null-pointer dataflow example

Issue: Correlated Conditionals

I Not every path through a control flow graph is necessarily feasible
I The outcome of an earlier conditional may determine the outcome of a

later conditional
I This can cause lots of false positives!
I Our approach:
I Only report all NPEs that would occur given full statement coverage or

full branch coverage
I “Maybe” values changed to “Uncertain” on conditional branches

More sophisticated approach

I The issues found by the approach just described are highly likely to be real
issues

I But, the loss of precision when there are paths with multiple conditional
branches means that some real bugs are missed

A missed null pointer bug

// In Apache Tomcat 4.1.24

HttpServletRequest hreq = null;
if (req instanceof HttpServletRequest)

hreq = (HttpServletRequest) req;

if (isResolveHosts())
result.append(req.getRemoteHost());

else
result.append(req.getRemoteAddr());

...
result.append(hreq.getMethod());

More sophisticated analysis

I Idea: add a backwards analysis to determine where in a method reference
values are guaranteed to be dereferenced
I Very similar to liveness analysis! Main difference is that we only

consider dereferences, which are a subset of uses
I Compare the results of the guaranteed dereference analysis with the

results of the nullness analysis
I If we find a location where a value which is definitely null or “null on a

simple path” is guaranteed to be dereferenced, report a warning

Guaranteed dereference example

Guaranteed dereference example (nullness analysis)

Guaranteed dereference example (guaranteed deref analysis)

Conclusions

Program analysis is useful!

I Program analysis techniques, such as dataflow analysis, are useful for
more than just compiler optimization

I Many useful tools have been built using this approach
I Clang static analyzer
I Coverity Scan
I Many others

I Static analysis is not a silver bullet
I But, can be a useful complement to other techniques for finding

software defects

	Bug patterns
	Null pointer bugs
	Conclusions

