Lecture 23: Static Analysis to Find Bugs

David Hovemeyer

November 30, 2022

601.428/628 Compilers and Interpreters

| -

B il!,’

Bugs in Software

» Bugs in software are a significant problem

» 2018 estimate of annual cost to US economy: $2.84 trillion?

» Ways to find bugs before they enter production systems are needed
» What can we do?

Yttps://www.it-cisq.org/the-cost-of-poor-quality-software-in-the-us-a-2018-report/
The-Cost-of-Poor-Quality-Software-in-the-US-2018-Report.pdf

https://www.it-cisq.org/the-cost-of-poor-quality-software-in-the-us-a-2018-report/The-Cost-of-Poor-Quality-Software-in-the-US-2018-Report.pdf
https://www.it-cisq.org/the-cost-of-poor-quality-software-in-the-us-a-2018-report/The-Cost-of-Poor-Quality-Software-in-the-US-2018-Report.pdf

» Run the program, see if it behaves correctly
» Limitations:

» Error handling code is difficult to test
» Threading bugs can be very hard to reproduce
» Test scaffolding is time-consuming to create

Code inspection

» Manually examine source code, look for bugs
» Limitations:
» Labor intensive
» Subjective: source code might appear to be correct when it is is not
» Can you spot the typo in this slide?
» People have similar blind spots reading source code

Code inspection

» Manually examine source code, look for bugs
» Limitations:
» Labor intensive
» Subjective: source code might appear to be correct when it is is not
» Can you spot the typo in this slide?
» People have similar blind spots reading source code

Static analysis

A Warning 1
Static

Program . .
code |:> analysis |::>AWarn|ngz

tool

» |dea: automated code inspection
» Use a program to analyze your program for bugs
» Analyze statements, control flow, method calls
» Advantages over testing and manual code inspection:

» Can analyze many potential program behaviors
» Doesn't get bored
» Relatively objective

Limits of static analysis

» Nontrivial properties of programs are undecidable

“Does program P have bug X7?"
“Can program P reach state X?"
Halting problem

» Static analysis can (in general) never be fully precise, so it must
approximate the behavior of the program

Approximating towards completeness

» We could design a bug-finding analysis so that it always overestimates
possible program behaviors

» Never misses a bug, but might report some false warnings

» Problem: the analysis may report so many false warnings that the real
bugs cannot be found!

» Trivial version: report a bug at every point in the program

Approximating towards soundness

» We could design a bug-finding analysis so that it always underestimates
possible program behaviors

» Never reports a false warning, but might miss some real bugs
» Problem: analysis may not find as many bugs as we would like
» Trivial version: never report any warnings

Heuristic analysis

» A static analysis to find bugs does not need to be consistent in its
approximations

» Neither complete nor sound: miss some real bugs, and report some
false warnings

» This gives the analysis the flexibility to estimate likely program behaviors

» May allow the analysis to be more precise in general

Practical issues

» Say your program has 100 real bugs
» Would you rather use

» A tool that finds all 100 bugs, but reports 1,000,000 warnings
» A tool that finds only 25 bugs, but reports 50 warnings

» Using a bug-finding tool must be a productive use of the developer’s time

» In general, no useful tool will find every bug

Bug patterns

» Not all bugs are subtle and unique
» Many bugs share common characteristics
» A bug pattern is a code idiom that is usually a bug

» Detection of many bug patterns can be automated using simple analysis
techniques

The FindBugs tool

» FindBugs:
» Open source
» https://findbugs.sourceforge.net
» Implements detectors for 50+ bug patterns
» No longer maintained: successor project is
SpotBugs https://spotbugs.github.io/
» Analyzes Java bytecode

» Bytecode is the machine language for the Java
Virtual Machine
» Easier to analyze than source code

Null pointer bugs

Null pointer bugs

» In Java, a reference value can be null
» If such a reference is dereferenced, a NullPointerException is thrown

» Default behavior: the thread performing the operation is abruptly
terminated
» Examples of dereferences:
» Call an instance method (x.foo())
» Load a value from a field (sum += x.count)
> Store a value to a field (x.count = 42)
» Load a value from an array element (sum += x[i])
» Store a value to an array element (x[i] = 17)
» Check the length of an array (i < x.length)

Example null pointer bug

» Apache Ant 1.6.2,
org.apache.tools.ant.taskdefs.optional.metamata. MAudit

if (out == null) {
try {
out.close();
} catch (IOException e) {
}

Example null pointer bug

» Eclipse 3.0.1, org.eclipse.update.internal.core.ConfiguredSite

if (in == null)
try {
in.close();
} catch (IOException el) {
}

Example null pointer bug

» Eclipse 3.0.1, org.eclipse.jdt.internal.debug.ui.JDIModelPresentation

if (sig != null || sig.length() == 1) {
return sig;

}

Example null pointer bug

» Eclipse 3.0.1, org.eclipse.jdt.internal.ui.compare.JavaStructureDiffViewer

Control c= getControl();
if (¢ == null &% c.isDisposed())
return;

Example null pointer bug

» From JBoss 4.0.0RC1

public String getContentId()
String[] header = getMimeHeader("Content-Id");
String id = null;
if(header != null || header.length > 0)
id = header[0];
return id;

Null pointer dereferences

» Some null pointer deferences require sophisticated analysis to find
» Analyzing across method calls, modeling the contents of heap objects
» We have seen many examples of obvious null pointer dereferences
» Often arising from simple mistakes, such as using the wrong boolean
operator
» How can we construct an analysis to find obvious null pointer
dereferences?

» Values which are always null
» Values which were null on some control path

Dataflow analysis

» At each point in a method, keep track of dataflow facts
» E.g., which local variables and stack locations might contain null
» Symbolically execute the method:

» Model instructions
» Model control flow
» [terate until a fixed point solution is reached

Dataflow values

» Model values of local variables -
and stack operands using lattice / \

of symbolic values NIl Not Null
» When to control paths merge, \

use meet operator to combine I

values Uncertain

» This is the greatest lower Jl_

bound of the values

Meet example

T\
Null Not Null

Null o Null = Null
I

Uncertain

I
1

Meet example

Null ¢ Not null = Maybe null

Uncertain

Null-pointer dataflow example

X =y = null;

if ('cond) {
y = new ...

}

y.f();

if (cond2)
x.f();

else

.
’

x =y = null

Null-pointer dataflow example

X =y = null;

if ('cond) {
y = new ...

}

y.f();

if (cond2)
x.f();

else

.
’

x =y = null

Null-pointer dataflow example

X =y = null;

if ('cond) {
y = new ...

}

y.f();

if (cond2)
x.f();

else

.
’

x =y = null

L =

y = new ...

x=null
y=not null

Null-pointer dataflow example

X =y = null;

if ('cond) {
y = new ...

}

y.f();

if (cond2)
x.f();

else

.
’

x =y = null

L

y = new ...

x=null
y=not null

Null-pointer dataflow example

X =y = null;

if (lcond) { x=y=nul

y = new ... =
) y = new ...
Y. f() ’ X=I’1\U|| x=null
if (cond2) e y=not null

x.f();
else

.
’

Null-pointer dataflow example

X =y = null;

if ('cond) { x=y=nul
y = new ...

}

y.f();

if (cond2)
x.f();

else

.
’

Null-pointer dataflow example

X =y = null;

if ('cond) { x=y=nul
y = new ...

}

y.f();

if (cond2)
x.f();

else

.
’

Null-pointer dataflow example

z = null

z = null;
if (cond) {
Z = new ...

}

if (cond2)
z.T();

Null-pointer dataflow example

z = null

z = null;
if (cond) {
Z = new ...

}

if (cond2)
z.T();

Null-pointer dataflow example

z = null
z = null;
if (cond) {
Z = new ... Z = new ...
}
if (cond2)
Z. f() ; Guaranteed safe

if cond=true
implies cond2=true

Issue: Correlated Conditionals

» Not every path through a control flow graph is necessarily feasible
» The outcome of an earlier conditional may determine the outcome of a
later conditional
» This can cause lots of false positives!
» Our approach:

» Only report all NPEs that would occur given full statement coverage or
full branch coverage
» “Maybe” values changed to “Uncertain” on conditional branches

More sophisticated approach

» The issues found by the approach just described are highly likely to be real
issues

» But, the loss of precision when there are paths with multiple conditional
branches means that some real bugs are missed

A missed null pointer bug

// In Apache Tomcat 4.1.24

HttpServletRequest hreq = null;
if (req instanceof HttpServletRequest)
hreq = (HttpServletRequest) req;

if (isResolveHosts())

result.append(req.getRemoteHost());
else

result.append(req.getRemoteAddr());

result.append(hreq.getMethod()) ;

More sophisticated analysis

» |dea: add a backwards analysis to determine where in a method reference
values are guaranteed to be dereferenced

» Very similar to liveness analysis! Main difference is that we only
consider dereferences, which are a subset of uses

» Compare the results of the guaranteed dereference analysis with the
results of the nullness analysis

» |If we find a location where a value which is definitely null or “null on a
simple path” is guaranteed to be dereferenced, report a warning

Guaranteed dereference example

x = null

/

x = new Foo()

some
condition

x.bar() x.baz()

SN N
NN

Guaranteed dereference example (nullness analysis)

x = null

/

x = new Foo()

some
condition

x.bar()

VAR VAN

x.baz()

NN

Guaranteed dereference example (guaranteed deref analysis)

x = null

/

x = new Foo()

some
condition

x.bar()

VAR VAN

x.baz()

NN

Conclusions

Program analysis is useful!

» Program analysis techniques, such as dataflow analysis, are useful for
more than just compiler optimization
» Many useful tools have been built using this approach
» Clang static analyzer
» Coverity Scan
» Many others
» Static analysis is not a silver bullet

» But, can be a useful complement to other techniques for finding
software defects

	Bug patterns
	Null pointer bugs
	Conclusions

