Lecture 22: Code optimization strategy

David Hovemeyer

November 28, 2022

601.428/628 Compilers and Interpreters

| -

B il!,’



» Expectations for code optimization (Assignment 5)
» Possible approach



Expectations for Assignment 5

» Assignment 5 is open-ended
» No inherently right way to approach it
» Primary expectations:

» |dentify opportunities to improve generated code
» Implement optimizations to address those opportunities

» |t will be most straightforward to focus on optimizing the high-level code



Focus on local optimizations

» To avoid complexities arising from control flow, we recommend
implementing local (basic-block scope) optimizations

» The ControlFlowGraphTransform class automates transformation of a
CFG

» Override the transform_basic_block member function

» Use HighLevelControlFlowGraphBuilder to build a high-level
ControlFlowGraph object from the high-level InstructionSequence



Minimum expectation

» At a minimum, you should do something to improve the generated code
» Some relatively easy optimizations

» Constant folding

» Constant propagation

» Copy propagation

» Dead store elimination



Peephole optimizations

» A peephole optimization scans a basic block to look for short sequences of
consecutive instructions which have some obvious and easy-to-fix
inefficiency

» Useful as a way to “clean up” the generated code
» These can be quite effective, and can be relatively easy to implement
» Could be useful on both high- and low-level code



Local value numbering

» Local value numbering (if implemented fully) subsumes constant folding
and constant propagation, and also eliminates redundant computations

» But, it's fairly challenging to implement!
» |t is definitely not mandatory to implement this



Local register allocation

» Local register allocation is relatively straightforward to do, and should get
you a considerable speedup

» Idea is to scan high-level instructions in each basic block, and assign
machine registers to virtual registers instruction by instruction
» Personally, | find bottom-up register allocation to be the most intuitive

approach

» You'll need to allocate memory in the stack frame for spilled registers

» Important. do not assign machine registers to any virtual registers which
are live at the end of the basic block



“Global™ allocation of callee-saved registers to local variables

» Local register allocation can't allocate registers for local variables whose
lifetimes are greater than one basic block

» However, you could do a global (entire function scope) allocation of a
callee-saved register to a local variable

» ldea: identify “frequently-used” variables (e.g., loop variables), and
“pre-allocate” callee-saved registers to them

» These allocations are in effect for the entire function (hence, they are
“global”)

» The local register allocator will need to be aware of such assignments

» This is a very easy way to allocate registers for loop variables



» Do some basic local optimizations (constant folding, constant
propagation, copy propagation, dead store elimination)

» Do some peephole optimizations?

» If done well (and with good experiments and report) this could reach the
B to B+ range



» Some basic local optimizations, plus local register allocation
» Maybe allocation of callee-saved registers to loop variables

» If done well (with good experiments and report), this could reach the A-
range



» Local value numbering (with associated “cleanup” passes, such as copy
propagation and dead store elimination)

» Local register allocation
» Maybe allocation of callee-saved registers to loop variables
» If done well (plus good experiments/report), should be a solid A



If you are feeling ambitious

Some ideas for “above and beyond” level code optimization:

» Implement a dataflow analysis (see me if you are interested in trying this,
there is a general framework for dataflow analysis in the starter code)

» “Advanced” instruction selection techniques (perhaps replace address
computation with indexed or index/scaled addressing modes)

» Global register allocation (had one student do this successfully last year!)



