
Lecture 22: Code optimization strategy

David Hovemeyer

November 28, 2022

601.428/628 Compilers and Interpreters



Today

I Expectations for code optimization (Assignment 5)
I Possible approach



Expectations for Assignment 5

I Assignment 5 is open-ended
I No inherently right way to approach it
I Primary expectations:
I Identify opportunities to improve generated code
I Implement optimizations to address those opportunities

I It will be most straightforward to focus on optimizing the high-level code



Focus on local optimizations

I To avoid complexities arising from control flow, we recommend
implementing local (basic-block scope) optimizations

I The ControlFlowGraphTransform class automates transformation of a
CFG
I Override the transform_basic_block member function

I Use HighLevelControlFlowGraphBuilder to build a high-level
ControlFlowGraph object from the high-level InstructionSequence



Minimum expectation

I At a minimum, you should do something to improve the generated code
I Some relatively easy optimizations
I Constant folding
I Constant propagation
I Copy propagation
I Dead store elimination



Peephole optimizations

I A peephole optimization scans a basic block to look for short sequences of
consecutive instructions which have some obvious and easy-to-fix
inefficiency

I Useful as a way to “clean up” the generated code
I These can be quite effective, and can be relatively easy to implement
I Could be useful on both high- and low-level code



Local value numbering

I Local value numbering (if implemented fully) subsumes constant folding
and constant propagation, and also eliminates redundant computations

I But, it’s fairly challenging to implement!
I It is definitely not mandatory to implement this



Local register allocation

I Local register allocation is relatively straightforward to do, and should get
you a considerable speedup

I Idea is to scan high-level instructions in each basic block, and assign
machine registers to virtual registers instruction by instruction
I Personally, I find bottom-up register allocation to be the most intuitive

approach
I You’ll need to allocate memory in the stack frame for spilled registers
I Important: do not assign machine registers to any virtual registers which

are live at the end of the basic block



“Global” allocation of callee-saved registers to local variables

I Local register allocation can’t allocate registers for local variables whose
lifetimes are greater than one basic block

I However, you could do a global (entire function scope) allocation of a
callee-saved register to a local variable

I Idea: identify “frequently-used” variables (e.g., loop variables), and
“pre-allocate” callee-saved registers to them
I These allocations are in effect for the entire function (hence, they are

“global”)
I The local register allocator will need to be aware of such assignments
I This is a very easy way to allocate registers for loop variables



Scenario 1

I Do some basic local optimizations (constant folding, constant
propagation, copy propagation, dead store elimination)

I Do some peephole optimizations?
I If done well (and with good experiments and report) this could reach the

B to B+ range



Scenario 2

I Some basic local optimizations, plus local register allocation
I Maybe allocation of callee-saved registers to loop variables
I If done well (with good experiments and report), this could reach the A-

range



Scenario 3

I Local value numbering (with associated “cleanup” passes, such as copy
propagation and dead store elimination)

I Local register allocation
I Maybe allocation of callee-saved registers to loop variables
I If done well (plus good experiments/report), should be a solid A



If you are feeling ambitious

Some ideas for “above and beyond” level code optimization:
I Implement a dataflow analysis (see me if you are interested in trying this,

there is a general framework for dataflow analysis in the starter code)
I “Advanced” instruction selection techniques (perhaps replace address

computation with indexed or index/scaled addressing modes)
I Global register allocation (had one student do this successfully last year!)


