Lecture 12: AST visitors, ad-hoc semantic analysis

David Hovemeyer

October 12, 2022

601.428/628 Compilers and Interpreters

| -

B il!,’



» Semantic analysis

» AST visitors

» Ad-hoc semantic analysis, symbol tables
» An example



Semantic analysis

» Parser establishes whether or not the input source is syntactically value
» This does not guarantee that the input is semantically valid

» Eg,int x = "hello";
» Semantic analysis:

» Check that names refer to something valid
» Check that operations performed are consistent with the source
language's semantics



Formal vs. ad-hoc techniques

» With lexical analysis and parsing, formal techniques are very effective
» Lexical analysis: regular languages, regular expressions, finite automata
» Parsing: context-free grammars, parsing algorithms
» Formal approach to semantic analysis: attribute grammars
» We will cover these later
» This approach has difficulties
» Ad-hoc semantic analysis: write ad-hoc code to check semantic properties

» Could execute during parsing
» Could execute on a representation of the input source (i.e., the AST)



AST visitors



Doing a computation on a tree

// approach 1
void TreeComputation::process_tree(Node *n) {
switch (n->get_tag()) {
case NODE TAG 1:
...code to handle NODE TAG 1...
...recursively process children...
break;
case NODE TAG 2:
...code to handle NODE TAG 2...
...recursively process children...
break;
.etc...



Doing a computation on a tree

// approach 2
void TreeComputation::process_tree(Node *n) {
switch (n->get_tag()) {
case NODE_TAG_1:
visit_node_tag 1(n); // will also process children
break;
case NODE_TAG_2:
visit_node_tag 2(n); // will also process children
break;
..etc...



» Lots of repetitive code

» Second approach is nice in that each kind of tree node is handled by a
dedicated function

» But the big switch statement is still tedious and error-prone code
» Also: what if we have multiple tree computations?
» Potential for duplicated code



Visitor design pattern

» |dea: abstract the traversal and dispatching to per-node-type functions
into a base class

» Derived classes then only need to override the per-node-type member
functions as necessary



AST Visitor

» ASTVisitor: a base class for implementations of tree computations on
the AST
» Assignment 3: SemanticAnalysis
» Assignment 4: high-level code generation



class ASTVisitor {
public:

ASTVisitor();

virtual ~ASTVisitor();

virtual void visit(Node *n); // <-- switch statement is here
virtual void visit_unit(Node *n);

virtual void visit_variable_declaration(Node *n);

...many others...

virtual void visit_children(Node *n); // <-- recursively visit children
virtual void visit_token(Node *n);



General recursive treewalk

» The default behavior of each node-specific visit function is to call
visit children

» This means that the default behavior of any class derived from
ASTVisitor is a general recursive treewalk of the AST

» Which is why a derived visitor class can just override the visit functions
that it actually cares about



Defining a visit function

Note that if you override a node-specific visit function, then it's up to you to
decide whether and how to visit children.

Example:

void SemanticAnalysis::visit_variable_declaration(Node *n) {
// visit the base type
visit(n->get_kid(1));
std: :shared_ptr<Type> base_type = n->get_kid(1)->get_type();

// iterate through declarators, adding variables

// to the symbol table

Node *decl_list = n->get_kid(2);

for (auto i = decl_list->cbegin(); i != decl_list->cend(); ++i) {
Node *declarator = *i;
// ...handle the declarator...

}

}



Where results go

» The most straightforward way to record results is to store them in the
visited tree node

» For example:

» Store a pointer to a symbol table entry in a node representing a
reference to a variable or function

» Store a (shared) pointer to the Type object representing the type of an
expression

» Store a boolean value indicating whether or not an expression yields an
lvalue



The purpose of the NodeBase class is to give you a place to define new
member variables and member functions for AST nodes.

The reason we don’t recommend that you modify Node directly is that we
might want to give you a new version. Putting your changes in NodeBase
means you never need to modify Node.



Propagation of values

» Propagating values upwards in the tree is generally easy, because the
parent has links to its children
» Recursively visit children, then make use of computed values stored in
them
» Propagating values downwards is more difficult because child nodes don't
link back to the parent

» Fortunately, upwards tends to be the most natural direction

» For the rare cases of propagating values downwards (e.g., for
communicating the base type to the code that processes declarators) you
might need to write some custom traversal code



Ad-hoc semantic analysis, symbol tables



Semantic analysis, symbol tables

Two of the main concerns of semantic analysis:
1. Determine what each name refers to

2. Determine a type for each expression

Building symbol tables is the classic approach to performing semantic analysis



SymbolTable = Environment

» |If you're comfortable with the notion of “environment” from the
interpreter project, a symbol table is more or less the same thing
» Represents a scope in the program
» Stores information about what names in that scope refer to
» Can have a “parent” representing the enclosing scope

» The main difference is that Environment kept track of a runtime value
for each name, while SymbolTable will keep track of information about a
variable, function, or data type



Symbol class

// represents one symbol table entry
class Symbol {
private:
SymbolKind m_kind;
std::string m_name;
std::shared_ptr<Type> m_type;
SymbolTable *m_symtab;
bool m_is_defined;

public:
// constructor, member functions...

};



Symbol tables example

Global scope EH—)'

struct Point {

Name

Kind

Type

int x, vy;

bi

void move_horiz (struct Point *p,
int dx) {
int u;
u = p—->x + dx;
p->x = u;

}



Symbol tables example

struct Point { Global scope Name Kind Type
int x, vy; struct Point Type struct { }
i
void move_horiz (struct Point *p,
int dx) { Name Kind Type
int u;
u = p—>x + dx;
p—>x = u;

}

Create entry and symbol

table for the struct Point
data type




Symbol tables example

struct Point { Global scope Name Kind Type

int x, vy; struct Point Type struct Point { }

bi

void move_horiz (struct Point *p,

int dx) { Name Kind Type
int u; x Var int
u = p—>x + dx; -
p*>x = u; Y ar int

}

Entries for members of

struct Point are added
to its symbol table




Symbol tables example

struct Point { Global scopeEH—) Name Kind Type

int x, vy; struct Point Type struct Point{x:int,y:int}
i
void move_horiz (struct Point *p,

int dx) { Name Kind Type

int u; x Var int

u = p—>x + dx; v i

p*>X = u; Yy ar int

}

Full representation of

struct Point is now
known




Symbol tables example

struct Point { Global scopeEH—) Name Kind Type
int x, vy; / struct Point Type struct Point {x:int,y:int}
); move_horiz Func (ptr to struct Point x int) - void
void move_horiz (struct Point *p,
int dx) { Name Kind Type
int u; x Var int
u = p—>x + dx; -
Yy Var int
p—>x = u;
}
Name Kind Type
Add entry for move_horiz - - -
function, create sy?nbol P Var ptr to struct Point {x:int,y:int}
table for its parameters dx Var int




Symbol tables example

struct Point { Global scopeEH—) Name Kind Type
int x, vy; / struct Point Type struct Point {x:int,y:int}
}; move_horiz Func (ptr to struct Point x int) - void
void move_horiz (struct Point *p,
int dx) { Name Kind Type
int wu; x Var int
u = p—->x + dx; -
_ Yy Var int
p—>x = u;
}
Name Kind Type
Create symbol table for p vVar ptr to struct Point {x:int,y:int}
body of move_horiz = Var int
function, add entry for
local variable u
Name Kind Type
u Var int




Symbol tables example

struct Point { Global scopeEH—) Name Kind Type
int x, vy; struct Point Type struct Point {x:int,y:int}
}; move_horiz Func (ptr to struct Point x int) - void
void move_horiz (struct Point *p,
int dx) { Name Kind Type
int u; x Var int
y Var int
}
Name Kind Type
Variable reference P Var ptr to struct Point {x:int,y:int}
be annotated with -
q dx Var int
pointers to symbol table
entries
Name Kind Type
u Var int




Type checking: based on the types of variables and literals, check each
operation in the program to make sure the operand types are consistent with
the language's semantic rules

Because C requires a declaration or definition to precede each use (for
variables, functions, and types), the symbol table should have information
about referenced names at the point of their use



Type checking examples

struct Point {
int x, y;

i

void foo(struct Point *p) {
int n;
n = 3;
@>x = n;

'q' is not defined in any

currently-visible scope

Name Kind Type
struct Point Type struct Point {x:int,y:int}
foo Func (ptr to struct Point{x:int,y:int}) - void
Name Kind Type
P Var ptr to struct Point{x:int,y:int}
Name Kind Type
n Var int




Type checking examples

struct Point { Name Kind Type
! int x, y; struct Point Type struct Point {x:int,y:int}
2
foo Func (ptr to struct Point{x:int,y:int}) - void

void foo(struct Point *p) {

int n; -
3', Name Kind Type
7
= n; P Var ptr to struct Point{x:int,y:int}
}
Name Kind Type
n Var int

'p' is a pointer to a struct
type, but that struct type

doesn't have a member
named 'z'




Type checking examples

struct Point { Name Kind Type
! int x, y; struct Point Type struct Point {x:int,y:int}
2
foo Func (ptr to struct Point{x:int,y:int}) - void

void foo(struct Point *p) {

int n; -
n = 3; Name Kind Type

P Var ptr to struct Point{x:int,y:int}
}
Name Kind Type
n Var int

Assignment of pointer
to int variable: 'p->x'
is an int Ivalue, '&n' is
a pointer to int rvalue




Type checking examples

struct Point {

int x, y;

bi

void foo(struct Point *p) {

Name Kind Type
struct Point Type struct Point {x:int,y:int}
foo Func (ptr to struct Point{x:int,y:int}) - void
Name Kind Type
P Var ptr to struct Point{x:int,y:int}
Name Kind Type
n Var int

Assignment of int rvalue
to struct Point lvalue
(types are not compatible)




Type checki

struct Point {

int x, y;

bi

void foo(struct Point *p) {

int n;
n = 3;
p—>x
}

n'is neither a pointer

ng examples

Name Kind Type
struct Point Type struct Point {x:int,y:int}
foo Func (ptr to struct Point{x:int,y:int}) - void
Name Kind Type
P Var ptr to struct Point{x:int,y:int}
Name Kind Type
n Var int

nor an array




Semantic analysis and type checking

To conclude:

» The semantic analyzer builds symbol tables recording the name and type
of each variable, function, and struct type

» The symbol tables can be used to check that each operation in the code
follows the source language's semantic rules

» The symbol tables will also be useful (and necessary) for storage
allocation and code generation



An example



An example

int sq(int *p) {
int x;
X = *p;

3

int main(void) {
int a;
a = 3;
sq(&a) ;
return a;



D

Cromenris DY
Gy () e Qi G () i <
D o™ S Qe T o i s
TS T o= s R i o G s ST BS et S
CUD Cur > (e Qi S (PR i (> @ G e e ()
GaD G GO T &> G GD T @D Epm>

GO T S
G



	AST visitors
	Ad-hoc semantic analysis, symbol tables
	An example

