Lecture 7: Lexical analyzer generators, lex/flex

David Hovemeyer

September 21, 2022

601.428/628 Compilers and Interpreters

=N

D i.y

» Regular expressions
» NFAs and DFAs
» lex and flex

Lexical analysis and regular languages

Implementing lexical analyzers

> Lexical analyzers (a.k.a. scanners) break the source text into a sequence
of tokens

» We can hand-code these
» Not terribly difficult, but somewhat tedious

» |s there a better way to implement them?

WHAT IF |;mu| YOU

. h

‘\ |

THAT AUTOMATA THEORY WAS ACTUALLY USEFUL

Regular languages!

» For any “reasonable” programming language, the lexemes of legal tokens
can be described by a regular language

» Basic idea:

» Each kind of token is described by a regular expression

» Regular expressions can be easily converted to nondeterministic finite
automata (NFAs)

» The NFA for each kind of token can be combined into a single NFA
which recognizes all of the different kinds of tokens

» The combined NFA can be converted into a deterministic finite
automaton (DFA)

» A DFA can be easily converted into an efficient program to recognize

tokens

Formal languages, regular languages

» A formal language is a set of strings
» A string is a sequence of symbols
» Regular languages are a particular subset of formal languages
» Which happen to be useful for describing character patterns of tokens
in programming languages
» Each string in a regular language is a string of symbols chosen from an
alphabet

» For programming languages, these symbols are text characters
appearing in the input source code

Regular expressions

» Regular expressions are one way to specify a regular language
» Constructing a regular expression:

» Sequence of literal symbols: generates a string
» | *| operator: means “0 or more”
> operator: means “1 or more”

> m operator: means “or”

> and : used for grouping

» Concatenation: if X and Y are regular expressions, then XY is a
regular expression generating all possible strings xy where x is in the
language generated by X, and y is in the language generated by Y

Regular expressions

Examples of regular expressions:

Regular expression Language (set of strings)

a a

aa aa

a* €, a, aa, aaa, ...

aa* a, aa, aaa, ...

a+ a, aa, aaa, ...

ba-+ ba, baa, baaa, .

(ba)+ ba, baba, bababa, ...
(a|b) a, b

alb* a, ¢, b, bb, bbb, ...
(alb)* €, a, b, aa, ab, ba, bb, ...

aa(ba)*bb aabb, aababb, aabababb, ...

Insta-quiz!

Which of the following strings is not generated by the regular expression
(ab)*|(ba)*

-~

abab
bababa
abba
babab

All of the above strings are generated

mU o w»

Extended regular expression syntax

» “Basic” regular expressions are a bit limited

» For example, the regular expression for “lowercase letter” is
(alblc|d]e[f[g]hlilj[k|l[m]|n|o[p|q|r[s|t|ulv|w|x|y|z)

» “Extended” regular expressions can specify character classes, e.g.

> [a-Z]

> [A-Za-Z]

> [0123456789]

> [0-9]
» Regular expression for C identifiers:

[A-Za-z_][A-Za-z_0-9]*

NFAs and DFAs

Finite automata

» A finite automaton is another way to specify a regular language
» Acts as a recognizer for strings in a regular language

» If it accepts a string, it's in the language
» If it rejects a string, it's not in the language

Finite automata concepts

» Has states and transitions
» One state is designated as the start state
» At least one state is designated as a final state
» Each transition is labeled with one symbol
» Recognition process:
» Start in start state
» Following a (non-epsilon) transition consumes one symbol from the
candidate string
» |f the current state is a final state when end of string is reached, it's in

the language
» Otherwise, string is not in the language

Finite automata

Finite automaton recognizing C identifiers:

[A-Za-z_0-9]

D@ [A-Za—z]
qo

Important: for simplicity, we're labeling transitions with character classes; it's
important to understand that this is just a shorthand notation for multiple
transitions

» For example, [A-Za-z_] matches 53 characters, so the arrow from q0 to
ql is really 53 distinct transitions

Deterministic finite automata

» The example finite automaton on the previous slide is a deterministic
finite automaton (DFA)
» “Deterministic” means that
» In any state, there aren't multiple outgoing transitions (to different
“destination” states) labeled with the same symbol, and
» There aren’t any epsilon transitions

» As a DFA processes a candidate string, there is always a single current
state

Nondeterministic finite automata

» A nondeterministic finite automaton (NFA) has

» States with multiple outgoing transitions on the same symbol, and/or
» One or more epsilon transitions

» An epsilon transition does not consume an symbol from the input string

» When an NFA processes a candidate string, it can be in multiple states at
the same time

» Candidate string is accepted if, when end of string is reached, current set
of states contains any accepting state

Example NFA

States Candidate string
Aab

Example NFA

States Candidate string
{a0, 91,94} ,ab

Example NFA

States Candidate string

{q0,q1, 94} L.ab
{ a2 95} a,b

Example NFA

States Candidate string
{a0,q1,q4} ,ab
{a2, 95} a,b
{a3, a7} ab,,

When end of string is reached, the
current set of states contains a final
state (q7), so the string is accepted

Insta-quiz!

What set of states is reached when
the NFA on the right recognizes

the string ?

{ a0}

{d0, a3 }

{ql, a3}

{q0, 92,3}
None of the above

mUow»

Eliminating nondeterminism

» Nondeterminism can always be eliminated!
» |.e., for any NFA, we can create a DFA that recognizes the same language

» NFA with n states could yield a DFA with 2" states, but that's not
likely to occur in practice

» Basic idea: simulate behavior of all possible inputs to the NFA, map each
reachable set of NFA states to a corresponding DFA state

» We'll show an example of how this works soon

Example language

Regular expressions for tokens in a simple programming language:

Regular
Token kind expression Note
Whitespace [L\t]+ Not a token per se, but does need to be
recognized by the lexer
|dentifier [a-z][a-z0-9]*
Addition \+ Literal plus symbol, not “1 or more”
Subtraction -
Multiplication * Literal asterisk
Division /
Number [0-9]+

Example language: per-token FAs

[\
\

Nt

[a-20-9]

Translate each regular D

expression into a DFA DG

(this can be automated)
o)
Plar—

/
qll

[0-9]

Example language: unified NFA

Combine individual

token FAs into a single
NFA

NFA recognizes union of
all lexemes (for all kinds
of tokens)

Example language: conversion to DFA

» Now, let’s convert the unified NFA into a DFA
» For each reachable set of states in NFA, create corresponding state in DFA

» Add transitions to DFA corresponding to transitions between reachable
NFA state sets

» See textbook for full algorithm

NFA to DFA conversion

NFA states DFA state

NFA to DFA conversion

NFA states DFA state
{0,1,3,5,7,9,11,13 } 0

NFA to DFA conversion

NFA states DFA state
{0,1,3,5,7,9,11,13 } 0
{2} 1

NFA to DFA conversion

NFA states DFA state
{0,1,3,5,7,9,11,13 } 0
{2} 1

{4} 2

NFA to DFA conversion

NFA states DFA state
{0,1,3,5,7,9,11,13 } 0
{2} 1
{4} 2
{6} 3

NFA to DFA conversion

NFA states DFA state
{0,1,3,5,7,9,11,13 } 0
{2} 1
{4} 2
3
4

{6}
{8}

NFA to DFA conversion

NFA states DFA state
{0,1,3,5,7,9,11,13 } 0
{2} 1
{4} 2
{6} 3
4
5

{8}
{10}

NFA to DFA conversion

NFA states DFA state

{0,1,3,5,7,9,11,13 } 0
{2} 1

{4} 2

{6} 3
4

5

6

{8}
{10}
{12}

NFA to DFA conversion

NFA states DFA state
{0,1,3,5,7,9,11,13 } 0
{2} 1

{4} 2

{6} 3

{8} 4
5

6

7

{10 }
{12}
{14}

NFA to DFA conversion

NFA states DFA state
0
{2} 1
{4} 2
{6} 3
{8} 4
{10} 5
{12} 6
{14} 7

NFA to DFA conversion

NFA states DFA state

0

1
{4} 2
{6} 3
{8} 4
{10} 5
{12} 6
{14} 7

NFA to DFA conversion

NFA states DFA state
0
1
2
{6} 3
{8} 4
{10} 5
{12} 6
{14} 7

NFA to DFA conversion

NFA states DFA state

—
oo
—_

~NOoO o WD RO

NFA to DFA conversion

NFA states DFA state

~NOo ok W Nk O

NFA to DFA conversion

NFA states DFA state

~NOo ok W Nk O

NFA to DFA conversion

NFA states DFA state

~NOo ok W Nk O

{14}

NFA to DFA conversion

NFA states DFA state

0 [\

1

2 a-2][0-9]
4

5

6

7

Final steps:
» Make q0 of DFA the start state
» Each NFA state set containing a

final state has its corresponding
DFA state marked as final

Table-driven recognition

Any DFA can be represented as a table indicating, for each DFA state, which
transitions to other DFA states exist

Given a table, it's trivial to create a program to recognize the language

Basic idea: repeatedly
» Read an input character

» See if there is a transition to another state

When we reach EOF, or if there's no transition available, see if we're in a final
state

» Which one we're in tells us what kind of token we've recognized

DFA transition table

State | [\t] [az] + - * / [0-9]
0 1 2 3 45 6 7
1 1 - - - -
2 - 2 - - - - 2
3 - - e —
4 — — — - - = —
5 — — — - - = —
6 - - i —
7 R

Some details

A few issues required to make this work:
» NFA to DFA conversion algorithm doesn't guarantee a minimal DFA
» Can use DFA minimization algorithm
» A final DFA state could correspond to multiple NFA final states

» For example, keywords are generally matched by the same regular
expression pattern as identifiers

» For example, if a keyword is recognized, the NFA will also be in the
final state for identifiers

» Solution is to prioritize kinds of tokens

» E.g., keywords take priority over identifiers

Can we put this into practice?

Is this a basis for implementing practical lexical analyzers?

It would be very time-consuming to build NFAs and DFAs by hand. For
example, the notation “[a-z]" is really 26 different characters requiring 26
different FA transitions, 26 columns in the DFA table, etc.

But, could we automate this process?

lex and flex

lex and flex

lex and flex are lexical analyzer generators

» lex: developed at AT&T Bell Labs, distributed with Unix, not really used
any more

» flex: modern open-source replacement for lex

They automate the process we've just covered

And, they're surprisingly easy to use

flex lexer specification

hi

C preamble (includes, definitions, global wvars)
h}

flex options

Tolh

patterns and actions

Yo

C functions

Example flex program

#{ int main(void) {
#include <stdio.h> yyin = stdin;
int kind;
enum TokenKind { while ((kind = yylex()) !'= 0) {
TOK_IDENTIFIER = 1, printf ("%d:%s\n", kind, yytext);
TOK_PLUS, ¥
TOK_MINUS, return 0;
TOK_TIMES, }
TOK_DIVIDE,
TOK_NUMBER,
};
4 Source code in lexdemo.zip
%option noyywrap linked from course website
W
[\t\nl+ { /* whitespace, ignore */ }
[a-z] [a-z0-9] * { return TOK_IDENTIFIER; }
" { return TOK_PLUS; }
n-n { return TOK_MINUS; }
T { return TOK_TIMES; }
"/ { return TOK_DIVIDE; }
[0-9]+ { return TOK_NUMBER; }

Tt

Running the example program

User input in bold:

$./lexdemo
foo + bar * 42
1:foo

2:+

1:bar

4%

6:42

How flex programs work

Basic idea:
» Sequence of patterns and actions
» When a pattern is recognized, the corresponding action is executed
» If input matches multiple patterns, the pattern appearing earliest takes
priority
» Action can return control to parser, or continue recognizing more input

» If action has a return statement, it indicates to the parser what kind
of token was recognized

yylex() function

The yylex () function reads input until both
» A pattern is matched, and
» The pattern’s action executes a return

The value returned by the action is the return value of yylex()

Returns 0 when end of input is reached

» Token kind values should thus be non-zero

yyin, yytext

yyin: A FILEx variable from which input will be read

yytext: This is a (nul terminated) C character string containing the lexeme
of the recognized pattern

WAZL

A variable of the union type YYSTYPE (usually declared by the parser)

Members of this union allow different grammar symbols to have different kinds
of values associated with them

» Lexer actions can assign to one of the fields

» We'll see how this works when we cover yacc/bison

	Lexical analysis and regular languages
	NFAs and DFAs
	lex and flex

