
Lecture 2: Context-free grammars, recursive descent
parsing

David Hovemeyer

August 31, 2022

601.428/628 Compilers and Interpreters



Today

I Context-free grammars, derivations, parse trees
I Recursive descent parsing
I Expression grammars
I Ambiguity
I Operator precedence and associativity



Context-free grammars, parse trees



Context-free grammars

I Context-free grammars are the most common way of describing the
syntax of a programming language

I If a source module conforms to the language’s grammar rules, it is
syntactically valid
I Which doesn’t imply that it’s semantically valid



Context-free grammar concepts

I The input string is a sequence of terminal symbols
I For an interpreter or compiler, the terminal symbols are the input

tokens scanned by the lexical analyzer
I The grammar is a set of productions:
I One nonterminal symbol on the left hand side
I Sequence of zero or more terminal and/or nonterminal symbols on the

right hand side
I The grammar has one nonterminal start symbol
I An input string is in the language specified by the grammar if it can be

derived from the grammar



Example context-free grammar

Nonterminal symbol: E (start symbol)

Terminal symbols: i n + - * / =
(note that ‘i’ and ‘n’ mean ‘identifier’ and ‘number’)

Grammar: E → + E E
E → - E E
E → * E E
E → / E E
E → = i E
E → i
E → n



Derivations

Deriving a string means:
I The working string initially consists of the start symbol
I Repeatedly:
I Choose a nonterminal symbol in the working string, and a production

with that nonterminal symbol on its left hand side
I Replace the chosen nonterminal symbol in the working string with the

sequence of symbols on the right hand side of the production
The process ends when the working string has no terminal symbols remaining



Example derivation

Input string: + - 4 1 5

(Note that 4 , 1 , and 5 are occurrences of the ‘n’ terminal symbol, so really
we are deriving + - n n n )

Working string Production
E

E → + E E
+ E E E → - E E
+ - E E E E → n
+ - n E E E → n
+ - n n E E → n
+ - n n n

Done!
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Parse trees

A parse tree is a data structure reflecting the productions applied in a
derivation:
I The start symbol is the root
I Applying a production attaches new nodes — the symbols on the right

hand side of the production — to the node representing the production’s
left hand side nonterminal symbol

It sounds more complicated than it is, let’s do it for the example derivation



Parse tree example

Working string Production
E E → + E E
+ E E E → - E E
+ - E E E E → n
+ - n E E E → n
+ - n n E E → n
+ - n n n



Parse tree example

Working string Production
E E → + E E
+ E E E → - E E
+ - E E E E → n
+ - n E E E → n
+ - n n E E → n
+ - n n n



What this all means

OK, so what does any of this have to do with compilers and interpreters?

The idea is that we can carefully design a language’s grammar:
I Each nonterminal symbol corresponds to a syntactic construct in the

language, e.g., “E” means “prefix expression”
I The structure of the parse tree corresponds to the structure of the

program, e.g., when the first child of an “E” node is “+”, it’s an addition

The idea that semantic properties follow from syntax is sometimes referred to
as “syntax-directed translation”

Important point: in general many different context-free grammars can
describe the same language, but not every grammar will correctly represent
the intended meaning of derived strings



Demonstration that parse trees are useful

Consider our example parse tree

Note that we’ve annotated the ‘n’
terminal nodes with their lexemes
(recall that the original string was
+ - 4 1 5 )

Two ideas:
I The ‘n’ nodes are literal values
I We can propagate values up to-

wards the root, applying oper-
ations, until we know the value
of the root node



Interpretation

Start



Interpretation

Propagate literal values



Interpretation

Do the subtraction



Interpretation

Do the addition



Parsing, recursive descent



Parsing

Parsing is the process of finding a derivation for an input string

Since compilers and interpreters are programs, we will need a parsing
algorithm to automate this

Today we’ll introduce recursive descent parsing, an incredibly useful and fairly
easy ad-hoc parsing technique



Recursive descent parsing

Basic ideas:
I Each nonterminal symbol has a parse function
I The goal of a parse function is to apply one production with its

nonterminal on the left hand side
I E.g., the parse function for the E nonterminal will try to apply a

production with E on the left hand side
I Applying a production means, for each symbol on the right hand side of

the production:
I If it’s a terminal symbol, use the lexer to consume it (advancing to the

next input token); if the wrong kind of terminal is consumed, or if the
lexer has reached end of input, report an error

I If it’s a nonterminal symbol, call its parse function



Predictive parsing

How does a parse function choose which production to apply?
I If there is only one possible production, apply it unconditionally
I Otherwise, call the lexer’s “peek” function to see what the next token will

be, and use that to make a decision

Ideal case is when all of the possible productions are distinguished by a unique
first terminal symbol on the right hand side
I In this case, the “peek” operation should identify a unique production (or

indicate that there is no valid production)

In reality, it’s sometimes a bit more complicated



Recursive descent: the reality

In practice, many grammars will require some cleverness:
I Two productions might share a common “prefix” of right hand side

symbols
I In this case, can “partially” apply both productions, until we reach a

point where they can be distinguished
I There can be productions with a nonterminal symbol as the first right

hand side symbol
I The lexer can only predict what terminal symbols appear next in the

input
I “First sets” can allow the parser to make predictions about

nonterminals, more on this idea soon
I An epsilon production has no symbols on the right hand side
I The parser should apply an epsilon production only if no other

(non-epsilon) production makes sense



Recursive descent parser implementation
From pfxcalc program: https://github.com/daveho/pfxcalc/

Terminal symbols: i n + - * / = ;

Nonterminal symbols: U E

Grammar: U → E ; U
U → E
E → + E E
E → - E E
E → * E E
E → / E E
E → = i E
E → i
E → n

https://github.com/daveho/pfxcalc/


How pfxcalc works

The pfxcalc program’s parser (Parser instance) builds a parse tree from the
input

Each parse function will return a Node instance that is the root of a portion of
the parse tree

Once the parse tree is complete, it interprets it directly to compute a result



parse member function

This is the entry point to the parser

Node *Parser::parse() {
// U is the start symbol
return parse_U();

}



parse_U member function

Node *Parser::parse_U() {
std::unique_ptr<Node> u(new Node(NODE_U));

// U -> ^ E ;
// U -> ^ E ; U
u->append_kid(parse_E());
u->append_kid(expect(TOK_SEMICOLON));

// U -> E ; ^
// U -> E ; ^ U
if (m_lexer->peek() != nullptr) {

// there is more input, so the sequence of expressions continues
u->append_kid(parse_U());

}

return u.release();
}



Things to note about parse_U

I There are two productions on U, but they both start with E, so parse_E
is called unconditionally

I The expect member function consumes a specific token, reporting an
error if the expected token is not available

I Comments indicate the productions that are viable, with a caret (^)
indicating which part of the productions have been applied; this is super
helpful for reasoning about what a parse function is doing

I After the semicolon is consumed, we’re either done, or the second
production needs to expand a U to continue recursively (if there are more
prefix expressions)
I The parser assumes that if it hasn’t reached end of input, then there

are more expressions



parse_E function

Node *Parser::parse_E() {
// read the next terminal symbol
Node *next_terminal = m_lexer->next();

std::unique_ptr<Node> e(new Node(NODE_E));

int tag = next_terminal->get_tag();

The function starts by consuming one token, and checking its tag (token kind)

Note that

1. Lexer::next throws an exception if the end of input is reached
2. reaching end of input is an error, because there is no epsilon production on E



parse_E function (continued)

if (tag == TOK_INTEGER_LITERAL || tag == TOK_IDENTIFIER) {
// E -> <int_literal> ^
// E -> <identifier> ^
e->append_kid(next_terminal);

If the token was an integer literal (n) or identifier (i) then we’ve completed a
production (integer literal or variable reference)



parse_E function (continued)

} else if (tag == TOK_ASSIGN) {
// E -> = ^ <identifier> E
e->append_kid(next_terminal);
e->append_kid(expect(TOK_IDENTIFIER));
e->append_kid(parse_E());

The assignment operator requires an identifier (naming the variable being
assigned) followed by an expression (which computes the value being assigned)



parse_E function (continued)

} else if (tag == TOK_PLUS || tag == TOK_MINUS ||
tag == TOK_TIMES || tag == TOK_DIVIDE) {

// E -> + ^ E E
// E -> - ^ E E
// E -> * ^ E E
// E -> / ^ E E
e->append_kid(next_terminal);
e->append_kid(parse_E()); // parse first operand
e->append_kid(parse_E()); // parse second operand

The binary operators require two subexpressions (to compute the operand
values)



parse_E function (continued)

} else {
SyntaxError::raise(next_terminal->get_loc(),

"Illegal expression (at '%s')", next_terminal->get_str().c_str());
}

return e.release();
}

If no valid production was found, it is extremely important to report an error
rather than continuing!

If a production was successfully applied, the parse node (root of the E
subtree) is returned



Is it necessary for the parser to build a parse tree?

I Having the parser build a parse tree is not the only way to make the
parser useful

I It could build an abstract syntax tree (more about this soon)
I It could do computations immediately, as the input is parsed



Why parse trees are useful

I Our interpreters and compilers will build full parse trees
I They represent the input exactly
I They are important evidence that the parser is working correctly
I They are very useful for debugging



Printing a parse tree

The pfxcalc program has a
treeprint module for printing a
textual representation of a tree

The -p option causes the program
to print the parse tree of the input

Example shown on right

This is very useful for debugging

$ echo "= a 4; * a 5;" | ./pfxcalc -p
U
+--E
| +--ASSIGN[=]
| +--IDENTIFIER[a]
| +--E
| +--INTEGER_LITERAL[4]
+--SEMICOLON[;]
+--U

+--E
| +--TIMES[*]
| +--E
| | +--IDENTIFIER[a]
| +--E
| +--INTEGER_LITERAL[5]
+--SEMICOLON[;]



Infix expressions



Infix expressions

Prefix expressions are fine, but mathematical notation traditionally uses infix
notation, where the operator is between the operands

How do we handle these?



Infix expression grammar attempt 1

Grammar: E → E + E
E → E - E
E → E * E
E → E / E
E → i = E
E → i
E → n

Once again, ‘i’ is an identifier and ‘n’ is an integer literal



Infix expression derivation

Derivation for 4 + 9 * 3 (really, n + n * n )

Working string Production
E E → E + E
E + E E → n
n + E E → E * E
n + E * E E → n
n + n * E E → n
n + n * n

Done!



Infix expression derivation
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Infix expression derivation
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Parse tree

Derivation for 4 + 9 * 3
(really, n + n * n )

Working string Production
E E → E + E
E + E E → n
n + E E → E * E
n + E * E E → n
n + n * E E → n
n + n * n



Infix expression derivation 2

Another derivation for 4 + 9 * 3 (really, n + n * n )

Working string Production
E E → E * E
E * E E → E + E
E + E * E E → n
n + E * E E → n
n + n * E E → n
n + n * n

Done!
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Infix expression derivation 2
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Parse tree 2

Derivation for 4 + 9 * 3
(really, n + n * n )

Working string Production
E E → E * E
E * E E → E + E
E + E * E E → n
n + E * E E → n
n + n * E E → n
n + n * n



Ambiguity

If a grammar can produce more than one parse tree for the same input string,
it is ambiguous

If we want the parse tree structure to encode meaning, this is bad



Ambiguity leads to multiple meanings



Ambiguity leads to multiple meanings

This means 31 This means 39



Correctly parsing infix expressions

To parse infix expressions correctly, we need:
I Correct operator precedence
I E.g., multiplication happens before addition

I Correct operator associativity
I E.g., a - b - c means (a - b) - c, not a - (b - c)

Strategies:
I Represent different precedence levels using different nonterminals
I Left recursion yields left associativity, right recursion yields right

associativity



A better infix expression grammar

Grammar (start symbol is A): A → i = A
A → E
E → E + T
E → E - T
E → T

T → T * F
T → T / F
T → F
F → i
F → n

Precedence levels:

Nonterminal Precedence Meaning Operators Associativity
A lowest Assignment = right
E Expression + - left
T Term * / left
F highest Factor



Infix expression derivation 3

Derivation for 4 + 9 * 3 (really, n + n * n ) using improved grammar

Working string Production
A A → E
E E → E + T
E + T E → T
T + T T → F
F + T F → n
n + T T → T * F
n + T * F T → F
n + F * F F → n
n + n * F
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Infix expression derivation 3

Derivation for 4 + 9 * 3 (really, n + n * n ) using improved grammar
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Parse tree

Parse tree corresponding to the
previous derivation:



Next time

I Limitations of recursive descent
I Precedence climbing
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