
Lecture 1: Course overview, lexical analysis

David Hovemeyer

August 29, 2022

601.428/628 Compilers and Interpreters



Welcome!

I Welcome to Compilers and Interpreters!
I Today:
I Policies and syllabus
I Course overview
I Lexical analysis



Logistics

I All public course information will be posted on the course website:
https://jhucompilers.github.io/fall2022
I Please check the course website frequently!

I Class is taught in person in Hodson 311
I Q&A, course announcements, and non-public course information will be

on Courselore, https://courselore.org
I Assignment submission using Gradescope,

https://www.gradescope.com
I Lecture recording videos will be posted to Canvas (details TBD)
I Office hours: some will be held via Zoom, some in person, see Courselore

for details

https://jhucompilers.github.io/fall2022
https://courselore.org
https://www.gradescope.com


Syllabus

I Syllabus is posted on course website:
https://jhucompilers.github.io/fall2022/syllabus.html

I Please read it!
I This lecture just includes summary/highlights

https://jhucompilers.github.io/fall2022/syllabus.html


Syllabus: communication policy

I Official course communication will use Courselore (check it regularly)
I Use Courselore for questions
I If possible, make questions public (if they would benefit other students,

and don’t contain assignment code or personal information)
I Please answer public questions if you can!

I Otherwise, private questions are fine
I We will make every effort to respond in a timely manner (usually the

same day)
I Please check your email regularly
I Email me (daveho@cs.jhu.edu) if you have any concerns

mailto:daveho@cs.jhu.edu


Syllabus: academic ethics

I Follow the CS Academic Integrity Code:
https://www.cs.jhu.edu/academic-integrity-code/

I Assignment submissions and exams must be entirely your work!
Submitting someone else’s work or allowing someone else to submit yours
constitute a violation of academic ethics

I Cite all sources used
I If you aren’t sure what is allowed and what isn’t, ask!

https://www.cs.jhu.edu/academic-integrity-code/


Syllabus: grading

I Assignments: 60%
I Series of projects to build interpreters and a compiler

I Exams: 40%
I Three in-class exams, each worth 13.3% of course grade
I First two exams during semester, third during scheduled final exam time



Course overview



Compilers and interpreters

I Compilers and interpreters are frequently-used strategies for implementing
programming languages

I This course: practical techniques for implementing compilers and
interpreters



What is a compiler?

I A compiler translates a program (or partial program) from a source
language to a target langauge

I Source language is often a “high-level” language
I E.g., C, C++

I Target language is often assembly language which can be translated into
directly-executable machine language
I E.g., x86-64 assembly language



What is an interpreter?

I An interpreter analyzes a source language program and carries out the
computation it embodies

I The source program is represented as a data structure
I Represents the program in “ready-to-execute” form

I The interpreter evaluates this data structure



Compilers vs. interpreters

I Compilation and interpretation are both useful ways to implement a
programming language

I The “front-end” of a programming language implementation — the
components which recognize and analyze the source program — are
similar in both interpreters and compilers

I Interpreters tend to be less effort to implement
I Compilers tend to allow the program to execute at closer to machine-level

performance
I Hybrid strategies such as virtual machines and just-in-time compilation

are possible



Rough course outline

I Lexical analysis: recognizing the lexical units (“words”) of a source
program

I Parsing: recognizing the syntax (constructs) of a source program
I High-level intermediate representations: parse trees and abstract syntax

trees
I Interpretation
I Semantic analysis and type checking
I Lower-level intermediate representations (e.g., control-flow graphs)
I Code generation
I Code optimization



Why is this course useful?

I Gain a deeper understanding of how programming languages are
implemented
I Know how the tools you are using work “under the hood”

I Compilation techniques can be used to create interesting tools for
software engineering (static analyzers, instrumentation tools)

I Lexical analysis and parsing techniques can be applied to all kinds of
structured data, not just source code



Implementation advice



Interpreters and compilers are complex!

I In this course you will be implementing realistic interpreters and compilers
I These will be fairly complex software artifacts!
I Managing the complexity will be crucial for success
I Here is some advice



Modularity is the key

I Modularity is the key to developing complex software systems
I Your programs should be a collection of data types and objects (instances

of those data types) that work together
I Make sure there is a clear separation of responsibility between each class

I Do not cut corners by violating encapsulation, adding unrelated
responsibilities to the same class, etc.

I If any the complexity of any class seems to be getting out of hand,
consider refactoring it



Use C++

I All of the starter code is in C++
I You could use a different language, but I don’t recommend it
I C++ gives you some powerful tools that can make your job easier



Use STL containers

I Use the C++ standard library container classes to manage data
I std::vector: useful for sequences
I std::map: useful for dictionaries (such as environments and symbol

tables!)
I Others could be useful too, e.g. std::set, std::deque



Use smart pointers

I Interpreters and compilers make heavy use of dynamic memory allocation
for incremental data structures
I E.g., tree nodes

I Smart pointers such as std::unique_ptr can take care of much of the
responsibility for ensuring that dynamically allocated objects are deleted

I This is especially helpful when exceptions could be thrown



Use exceptions for error reporting

If an error (syntax error, semantic error, runtime error, etc.) prevents the
program from progressing normally, throw an exception.

This allows the error handling code to be separated from the rest of the
program.

General idea:
int main() {

try {
parse_input();
generate_code();
return 0;

} catch (Exception &ex) {
fprintf(stderr, "Error: %s\n", ex.what());
return 1;

}
}



Use modern C++ features to simplify your code

I Modern C++ features can make your job easier
I Always use auto when possible to let the compiler determine the type of

a variable
I Lambdas can be useful for creating a function on the fly to pass to an

STL algorithm or other generic function

// example: loop over a container
for (auto i = nodes.begin(); i != nodes.end(); ++i) {

Node *node = *i;
// do something with the node

}

// example: recursively count nodes in a tree
int count = 0;
root->preorder([&count](Node *) { ++count; });



Lexical analysis



Lexical analysis

I Source code is generally represented as text: in other words, a sequence of
characters

I Lexical analysis (also known as scanning) refers to the task of grouping
sequences of input characters into lexical units, also known as tokens

I Tokens are the “words” of a source program



Hello, world



Hello, world (lexical structure)



What is a token?

I Token kind: value (usually integer or enumerated) representing what kind
of token it is

I Lexeme: the exact text of the token in the source code
I Some kinds of token can only ever have one lexeme (keywords,

punctuation, etc.)
I Some kinds of token can have a variety of lexemes (identifiers, literal

values)



Source information

It is also useful to represent where in the source code the token occured:
I Source file
I Line number
I Column number

Keeping track of this information helps the compiler or interpreter generate
useful error messages



Example token representation

enum TokenKind {
TOK_INT_KEYWORD,
TOK_RETURN_KEYWORD,
TOK_IDENTIFIER,
TOK_LPAREN,
// etc. for other kinds of tokens

};

struct Token {
enum TokenKind kind;
std::string lexeme;
std::string filename;
int row, col;

}



Lexical analyzer design

I The job of a lexical analyzer is to break down source code text into a
sequence of tokens

I Typical approach: lexical analyzer produces one token at a time, on
demand
I The parser will consume the scanned tokens, more about this soon...



Lexical analyzer design and implementation



A prefix calculator language

I A prefix expression is one where operators precede their operand(s)
I Example: + - 4 1 5 means (4 − 1) + 5
I The “prefix calculator language” accepts inputs which are a series of

prefix expressions, each terminated by a semicolon (;)
I Primary expressions: literal integers and identifiers
I Numeric operators: + - * /
I Assignment: = (first operand must be an identifier)
I Result of evaluation is the result of the last expression

I Code: https://github.com/daveho/pfxcalc

https://github.com/daveho/pfxcalc


Running the prefix calculator

$ ./pfxcalc
= a 1;
= b 3;
* + a b 6;
Result: 24



Lexer class

// lexer.h
class Lexer {
private:

// ...private fields...

public:
Lexer(FILE *in, const std::string &filename);
~Lexer();

Node *next();
Node *peek();

Location get_current_loc() const;

private:
// ...private member functions...

};



Lexer operations

I next() consumes one token from the input (calling next() repeatedly
will consume all tokens in the input)

I peek() returns the next token, without consuming it
I Parsers will use this function for lookahead

I Note that tokens are represented using the Node data type
I This is useful for building parse trees, more about this soon



Token kinds

// token.h
enum TokenKind {

TOK_IDENTIFIER,
TOK_INTEGER_LITERAL,
TOK_PLUS,
TOK_MINUS,
TOK_TIMES,
TOK_DIVIDE,
TOK_ASSIGN,
TOK_SEMICOLON,

};
These will be used as the “tag” values for the struct Node instances
representing tokens



How does the lexer actually work?
Let’s look at the next and peek
member functions:

Node *Lexer::next() {
fill();
if (m_next == nullptr)

...throw exception...
Node *tok = m_next;
m_next = nullptr;
return tok;

}

struct Node *Lexer::peek() {
fill();
return m_next;

}

I fill is a private member
function that calls the
read_token private member
function if a token object is
not available

I m_next is a pointer to the
available token object

I next and peek are similar; the
main difference is that next
throws an exception if at end
of input, and also consumes
the token



fill function

void Lexer::fill() {
if (!m_eof && !m_next) {

m_next = read_token();
}

}
I m_eof is a boolean member variable that is set to true when end of file

is reached
I The read_token private member function does the actual work of

reading a token



read_token function

Node *Lexer::read_token() {
// ... lots of code, read it yourself on Gitub ...

}



Ad-hoc lexical analysis

Basic idea for implementing ad-hoc lexical analysis (as in the prefix
calculator’s read_token member function):
I Skip whitespace (if any)
I Read a character; if EOF is reached, then there are no more tokens
I Based on what character is read, start scanning a particular kind of token
I E.g., if an alphabetic character was read, scan an identifier

I Keep reading characters that are a valid continuation of the current
lexeme

I When a character that isn’t a valid continuation is read, or EOF is
reached, create the token object



Disadvantages of ad-hoc lexical analysis

I Ad-hoc lexical analyzers can be somewhat tedious to implement
I Would be nice to have a declarative way to do lexical analysis:
I Specify regular expression patterns for each kind of token
I Have a tool generate a custom lexical analyzer from this specification

I Good news: lexical analyzer generators exist, and this is precisely what
they do!
I We will cover these soon



Next time

Next time we will discuss grammars and parsing techniques


	Course overview
	Implementation advice
	Lexical analysis
	Lexical analyzer design and implementation

