Lecture 17: High-level code generation

David Hovemeyer

October 31, 2022

601.428/628 Compilers and Interpreters

| -

B il!,’

High-level code generation

These slides present a few thoughts/recommendations about high-level code
generation

Correctness, not efficiency

The goal of high-level code generation is to correctly represent the operations
that each function will execute

You do not need to be concerned with generating efficient code

Storage allocation

» Each local variable and parameter should have storage allocated (add
fields to Symbol to describe where this storage is)
» A scalar (integer and pointer) local variable whose address is never taken
can have a virtual register (vreg) as its storage
» All other local variables (especially arrays and struct instances) will require
storage in memory (in the stack frame)
» The StorageCalculator class is intended to help you determine
storage requirements (size and offset) for local variables allocated in a
block of memory (i.e., the local variable area in the stack frame)

Annotate nodes with Operands

» To generate code for an expression node, annotate it with an Operand
indicating the storage location where the value of the expression can be
found

» For rvalues, this should be a freshly-allocated temporary register

» For Ivalues, this could be a virtual register (if one has been allocated as
the storage for a scalar local variable), or a memory reference operand (for
a local variable allocated storage in memory, a pointer dereference, or a
field reference)

generated code for left subexpression
generated code for right subexpression

mov_sfx lhs_location, rhs_value

sfx is an operand size suffix (b, w, 1, q) based on type of value being assigned.

Ihs__location is the operand specifying the storage location for the left hand
side Ivalue.

rhs_value is a temporary virtual register storing the computed value of the
expression on the right hand side. (This can also be the Operand representing
the overall result of the assignment.)

Binary operators

generated code for left subexpression
generated code for right subezxpression

op_sfx vrn, lhs_location, Ths_location

op_stx is the high-level opcode corresponding to the operator. E.g., add 1 if
adding 32-bit integer values.

vrn is a temporary virtual register. This will also be the Operand representing
the evaluation of the overall expression.

Ihs__location and rhs_location are the temporary virtual registers holding the
results of evaluating the left and right subexpressions.

Pointer operations

Idea: an Ivalue whose storage is in memory is represented by an operand of

the form ; i.e., vrn is a virtual register being used as a pointer, and the
operand is a memory reference using this pointer.

Address-of: Taking the address of this lvalue means changing to
[vrn]. l.e., we just want the pointer.

Dereference: If is a pointer, then dereferencing the pointer converts

the operand to . l.e., we want to refer to the memory the pointer is
pointing to.

Arrays, subscript operations

Code for subscript operation:

generated code to find address of first element
generated code to find indezx

mul_q vroff, vridz, $eltsize
add_q vreltaddr, vrbase, vroff

vridz is result of evaluating expression computing index. vroff is temporary
virtual register to hold computed element offset. eltsize is the array element
size. vrbase is the virtual register holding the pointer to the first element of
the array. vreltaddr is the temporary virtual register holding the pointer to
the element. The operand representing the element is \ (vreltaddr) \

Structs, field references

Similar to arrays. Location of struct instance is indicated by virtual register
pointing to beginning of struct instance. For each field, you will need to know
the offset of the field (from the beginning of the struct instance.)

(O <& <

Hao

(O <& <

Hao

(O <& <

Hao

(O <& <

Hao

