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Last Lecture

Introduced concept of a redundant expression

An expression, x+y, is redundant at point p if, along each path from
the procedure’s entry point to p, x+y has already been evaluated and
neither x nor y has been redefined.

* If x+yis redundant at p, we can save the results of those
earlier evaluations and reuse them at p, avoiding evaluation

* TInasingle block, we need only consider one such path

* We developed an algorithm for redundancy elimination in a
single basic block

* Two pieces to the problem

— Proving that x+y is redundant

— Rewriting the code to eliminate the redundant evaluation
Value numbering does both for straightline code
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Local Value Numbering

The LVN Algorithm, with bells & whistles

Block is a sequence of n

fori« Oto n-1 operations of the form

1. get the value numbers V; and V.,for L; and R; Ti—LOpR

2.if L; and R; are both constant then Constant folding
evaluate Li Op; R;, assignitto T;, and mark T, as a constant

3. If Li Op; R; matches an identity then Algebraic identities
replace it with a copy operation or an assignment

4. if Op; commutes and V, >V, then Commutativity

swap V; and V,
5. construct a hash key <V4,0p;,V,>
6. if the hash key is already present in the table then
replace operation | with a copy into T;and mark T; with the VN
else
insert a new VN into table for hash key & mark T, with the VN
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Local Value Numbering

Am<—a+b

Missed opportunities

n—a+b
/ \ (need stronger methods)
B C
p < c +d g a-+b .
r e c+d - LVN finds these redundant ops
D e « b + 18 E e « a + 17
s «a+tb t «c+ d
u—e+ £ u—e+ £
\ e
F v —a+b
w e c + d
X « e + £
L Local Value Numbering

Z « Cc + d
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* 1block at atime
* Strong local results
* No cross-block effects




Terminology

Am<—a+b
n—a-+>,

p—~c + d Cq<—a+b
r — c +d r « c + d

D| ¢ . b + 18
S<—a+b
u« e + £

Control-flow graph (CFG)
* Nodes for basic blocks
* Edges for branches

* Basis for much of
program analysis &
transformation

e « a + 17
t « ¢ + d
U« e + £

W« c + d
X « e + f

This CFG, G = (N,E)

G y<—a+b
Z « Cc + d
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* N={ABCD,EFG}

* E={(AB).(A0),(B.6)(CD)
(C.E).(D.F).(E.F).(F.E)}

* INI=7,]E] =8



Scope of Optimization

In scanning and parsing, "scope” refers to a region of the code
that corresponds to a distinct name space.

In optimization "scope” refers to a region of the code that is
subject to analysis and transformation.

* Notions are somewhat related
* Connection is not necessarily intuitive

Dif ferent scopes introduces different challenges & different
opportunities

Historically, optimization has been performed at several
distinct scopes.
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Scope of Optimization

Local optimization

A basic block is a maximal length
sequence of straightline code.

* Operates entirely within a single basic block
* Properties of block lead to strong optimizations

Regional optimization

* Operate on a region in the CFG that contains multiple blocks
* Loops, trees, paths, extended basic blocks

Whole procedure optimization (intraprocedural )
* Operate on entire CFG for a procedure
* Presence of cyclic paths forces analysis then transformation

Whole program optimization (interprocedural )
* Operate on some or all of the call graph (multiple procedures)
* Must contend with call/return & parameter binding
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A Comp 412 Fairy Tale

We would like to believe optimization developed in an
orderly fashion

* Local methods led to regional methods
* Regional methods led to global methods
* Global methods led to interprocedural methods

It did not happen that way

* First compiler, FORTRAN, used both local & global methods
* Development has been scattershot & concurrent

* Scope appears to relate to the inefficiency being attacked,
rather than the refinement of the inventor.
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A Regional Technique

Superlocal Value Numbering

r —c + d

/ Am<—a+b
n—a-+=>D-
Bp<—c+d Cq<—a+b

r — c + d

N\

EBB: A maximal set of blocks B;,
B, .., B, where each B;, except B,

has only exactly one predecessor
and that block is in the EBB.

Dl e - b+ 18 E[ ¢ « a + 17
s «a+b t « ¢c +d
u e+ f u— e+ f
X — /
F V « a + b
"< 9 | [{AB,C.D,E}isan EBB
L « It has 3 paths: (A,B), (A,C,D),
G| v-awe & (A.CE)

Z « Cc + d
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* Can sometimes treat each
path as if it were a block

{F} & {G} are degenerate EBBs
Superlocal: "applied to an EBB"




Superlocal Value Numbering

Al me-a+b EBB: A maximal set of blocks B,
ne—a+hb B,, ..., B, where each B;, except By,
/ \ has only exactly one predecessor
B[ 0 - c+a C[ g-2+b and that block is in the EBB.
r —« c +d r —« c +d
Dl ¢ - b + 18 El| ¢ — 2 + 17
s «a + b t « c+d
u«— e + £ u«—e + £
\ e
F Vv « a + b
woe e+ d The Concept
X « e + f
7 * Apply local method to paths
G through the EBBs
y «a +b
7 o4 * Do{AB} {AcCD} &{ACE}

* Obtain reuse from ancestors
* Avoid re-analyzing A & C
* Does not help with For 6
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Superlocal Value Numbering

Efficiency
* Use A's table to initialize tables for B & C
* To avoid duplication, use a scoped hash table Wl @ e CETITED O
some name
— A, AB, A, AC, ACD, AC, ACE, F,G
* Needa VN — name mapping to handle kills
— Must restore map with scope Almoarn
— Adds complication, not cost /
B p—c+d C qg—a+b
r c + d r c + d
D e « b + 18 E e —«a + 17
s «—a +b t«c+d
\
F Vv —«a + b
/
G y «a + b

zZ « Cc + d
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Superlocal Value Numbering

Efficiency
* Use A's table to initialize tables for B & C
* To avoid duplication, use a scoped hash table s a re-definition of
— A, AB, A, AC, ACD, AC, ACE, F,G
* Needa VN — name mapping to handle kills
— Must restore map with scope Al m—awn
— Adds complication, not cost o / o
To simplify matters D[ -5 15 |
* Need unique name for each definition oo ?\ ool
* Makes name — VN Fl v-ere
* Use the SSA name space —
G y « a+b
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zZ « Cc + d

S

The subscripted names from the earlier example | 4,
are an instance of the SSA name space.




SSA Name Space (locally)

Example (from earlier):

Original Code With VNs Rewritten
< Xo * Yo ap> — Xo' + Yo’ ap> — X' + Yo
* Do X + Yo X Do Xt + Yp? * by ag?
a; «— 17 a;*— 17 a;*— 17
* Co— X tYo X C® Xt +Yo? X Co? e ay?
Renaming: Notation: Result:
* Give each value a * While complex, * ay3 is available
unique name the meaning is * Rewriting just
* Makes it clear clear works
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SSA Name Space (in general)

Two principles
* Each name is defined by exactly one operation
* Each operand refers to exactly one definition

To reconcile these principles with real code
* TInsert ¢-functions at merge points to reconcile name space
* Add subscripts to variable names for uniqueness

X0

\ / becomes \ /

X, —0(x0,%1)

eXZ + eee
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Superlocal Value Numbering

A

m, —a t+ b

n, —a +>b

/

Py « ¢ + d

~

Our example in SSA form

* @-functions at join points
for names that need them

C

Comp 412, Fall 2010

g, <« a + b
rl<—C+d

* Minimal set of ®-functions
(see Chapter 9 in EaC)

eo<—b+18

E

e <« a + 17
tO ~c + d
u <« e + £

\ i
F e; « ¢(eq,eq)
u, « ¢ (uy,uy)
VO — a + b
WO — C + d
XO — e + f
r, « ¢ (ry,rp)
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Superlocal Value Numbering

The SVN Algorithm

WorkList — { entry block }
Empty < new table

while (WorkListis not empty)
remove a block b from WorkList

SVN(b, Empty)

Blocks to process

Table for base case

SVN( Block, Table)
t — new table for Block, with Table linked as surrounding scope

LVN( Block, t) Use LVN for the work

for each successor s of Block
if s has just 1 predecessor
then SVN(' s, t)
else if s has not been processed
then add s to WorkList

In the same EBB

Starts a new EBB

deallocate t

Assumes LVN has been parameterized
Comp 412, Fall 2010 16
w around block and table




Superlocal Value Numbering

With all the bells & whistles

A m, «a + b ]
n, —a+b * Find more redundancy
/ \ * Pay minimal extra cost
B[ o, —c + d Clq - a+0b * Still does nothing for F & G
r, — C + d r, « C + d
Dl ¢, - b + 18 El ¢, - 2 + 17
s, —a+b t, —c+d
u, <« e + £ u, « e + £t
\ i
F e; « ¢ (eg,eq)
u, — ¢ (up,u;)
Yoot Superlocal techniques
W,
X, — & + * Some local methods extend
—— cleanly to superlocal scopes
Gl v, « ¢(ry 1) * VN does not back up
Yo < @+ b * Backward motion causes probs
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A Regional Technique
Loop Unrolling

Applications spend a lot of time in loops
* We can reduce loop overhead by unrolling the loop

doi=1to 100 by 1 a(l) <« b(1)*c(1)

() b() *c) NP a(2) — b(2)*c(2)
Zn’d e 2(2) <—b(3)*g(3)

Complete unrolling

a(100) — b(100) * ¢(100)

* Eliminated additions, tests, and branches
— Can subject resulting code to strong local optimization!
* Only works with fixed loop bounds & few iterations
* The principle, however, is sound
* Unrolling is always safe, as long as we get the bounds right
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Loop Unrolling

Unrolling by smaller factors can achieve much of the benefit

Example: unroll by 4

do i =1to 100 by 1 doi=1to 100 by 4

a(i) - b(i) *c(i) W) o) b()* (i)

end a(i+1) < b(i+1) * c(i+1)

dneoll by 4 a(i+2) — b(i+2) * ¢(i+2)
a(i+3) <« b(i+3) * ¢(i+3)
end

Achieves much of the savings with lower code growth

* Reduces tests & branches by 25%

* LVN will eliminate duplicate adds and redundant expressions
* Less overhead per useful operation

But, it relied on knowledge of the loop bounds...
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Loop Unrolling

Unrolling with unknown bounds i1

do
Need to generate guard loops

doi=1tonby]l
a(i) ~ b()* (i) -

end
Unroll by 4

do

Achieves most of the savings

* Reduces tests & branches by 25%
* LVNstill works on loop body

* Guard loop takes some space

while (i+3 <n )

a(i) <« b(i)* c(i)
a(i+1) < b(i+1) * c(i+1)
a(i+2) <« b(i+2) * ¢(i+2)
a(i+3) < b(i+3) * ¢(i+3)
i —i+4

end

while (i < n)

a(i) <« b(i)* c(i)

[« i+1

end

Can generalize to arbitrary upper & lower bounds, unroll factors
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Loop Unrolling

One other unrolling trick

Eliminate copies at the end of a loop

t1 < b(0) t1 — b(0)
do i =1to 100 by 1 do i =1to 100 by 2
t2 < b(i) ‘ t2 < b(i)
Cl(l) «— a(’) +tl +t2 Unroll and rename a(’) — G(I) +tl+t2
tl — t2 t1 — b(i+1)
end a(i+1) < a(i+1) + t2 + t1
end

Unroll by LCM of copy-cycle lengths
* Eliminates the copies, which were a naming artifact
* Achieves some of the benefits of unrolling
— Lower overhead, longer blocks for local optimization
* Situation occurs in more cases than you might suspect
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This result has been rediscovered many times. [Kennedy's thesis] | 21




