
Code Optimization, Part II
Regional Techniques

Comp 412

Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved.

Students enrolled in Comp 412 at Rice University have explicit permission to make copies
of these materials for their personal use.

Faculty from other educational institutions may use these materials for nonprofit
educational purposes, provided this copyright notice is preserved.

COMP 412
FALL 2010

Last Lecture

Introduced concept of a redundant expression

An expression, x+y, is redundant at point p if, along each path from
the procedure’s entry point to p, x+y has already been evaluated and

neither x nor y has been redefined.

• If x+y is redundant at p, we can save the results of those
earlier evaluations and reuse them at p, avoiding evaluation

• In a single block, we need only consider one such path

• We developed an algorithm for redundancy elimination in a
single basic block

• Two pieces to the problem

— Proving that x+y is redundant

— Rewriting the code to eliminate the redundant evaluation

• Value numbering does both for straightline code

Comp 412, Fall 2010 2

Local Value Numbering (Recap)

The LVN Algorithm, with bells & whistles

Comp 412, Fall 2010 3

for i ← 0 to n-1

1. get the value numbers V1 and V2for Li and Ri

2. if Li and Ri are both constant then

evaluate Li Opi Ri, assign it to Ti, and mark Ti as a constant

3. if Li Opi Ri matches an identity then

replace it with a copy operation or an assignment

4. if Opi commutes and V1 > V2 then

swap V1 and V2

5. construct a hash key <V1,Opi,V2>

6. if the hash key is already present in the table then

replace operation I with a copy into T i and mark Ti with the VN

else

insert a new VN into table for hash key & mark T i with the VN

Block is a sequence of n
operations of the form

Ti ← Li Opi Ri

Constant folding

Algebraic identities

Commutativity

Comp 412, Fall 2010 4

Missed opportunities

(need stronger methods)

m ← a + b

n ← a + b

A

p ← c + d

r ← c + d

B

y ← a + b

z ← c + d

G

q ← a + b

r ← c + d

C

e ← b + 18

s ← a + b

u ← e + f

D e ← a + 17

t ← c + d

u ← e + f

E

v ← a + b

w ← c + d

x ← e + f

F

Local Value Numbering

Local Value Numbering

• 1 block at a time

• Strong local results

• No cross-block effects

LVN finds these redundant ops

Comp 412, Fall 2010 5

Terminology

m ← a + b

n ← a + b

A

p ← c + d

r ← c + d

B

y ← a + b

z ← c + d

G

q ← a + b

r ← c + d

C

e ← b + 18

s ← a + b

u ← e + f

D e ← a + 17

t ← c + d

u ← e + f

E

v ← a + b

w ← c + d

x ← e + f

F

Control-flow graph (CFG)

• Nodes for basic blocks

• Edges for branches

• Basis for much of
program analysis &
transformation

This CFG, G = (N,E)

• N = {A,B,C,D,E,F,G}

• E = {(A,B),(A,C),(B,G),(C,D),
(C,E),(D,F),(E,F),(F,E)}

• |N| = 7, |E| = 8

Scope of Optimization

In scanning and parsing, “scope” refers to a region of the code
that corresponds to a distinct name space.

In optimization “scope” refers to a region of the code that is
subject to analysis and transformation.

• Notions are somewhat related

• Connection is not necessarily intuitive

Different scopes introduces different challenges & different
opportunities

Historically, optimization has been performed at several
distinct scopes.

Comp 412, Fall 2010 6

Scope of Optimization

Local optimization

• Operates entirely within a single basic block

• Properties of block lead to strong optimizations

Regional optimization

• Operate on a region in the CFG that contains multiple blocks

• Loops, trees, paths, extended basic blocks

Whole procedure optimization (intraprocedural)

• Operate on entire CFG for a procedure

• Presence of cyclic paths forces analysis then transformation

Whole program optimization (interprocedural)

• Operate on some or all of the call graph (multiple procedures)

• Must contend with call/return & parameter binding

Comp 412, Fall 2010 7

A basic block is a maximal length
sequence of straightline code.

A Comp 412 Fairy Tale

We would like to believe optimization developed in an
orderly fashion

• Local methods led to regional methods

• Regional methods led to global methods

• Global methods led to interprocedural methods

It did not happen that way

• First compiler, FORTRAN, used both local & global methods

• Development has been scattershot & concurrent

• Scope appears to relate to the inefficiency being attacked,
rather than the refinement of the inventor.

Comp 412, Fall 2010 8

Comp 412, Fall 2010 9

Superlocal Value Numbering

m ← a + b

n ← a + b

A

p ← c + d

r ← c + d

B

y ← a + b

z ← c + d

G

q ← a + b

r ← c + d

C

e ← b + 18

s ← a + b

u ← e + f

D e ← a + 17

t ← c + d

u ← e + f

E

v ← a + b

w ← c + d

x ← e + f

F

*

{A,B,C,D,E} is an EBB

• It has 3 paths: (A,B), (A,C,D),
& (A,C,E)

• Can sometimes treat each
path as if it were a block

{F} & {G} are degenerate EBBs

Superlocal: “applied to an EBB”

A Regional Technique

EBB: A maximal set of blocks B1,
B2, …, Bn where each Bi, except B1,
has only exactly one predecessor
and that block is in the EBB.

Comp 412, Fall 2010 10

Superlocal Value Numbering

m ← a + b

n ← a + b

A

p ← c + d

r ← c + d

B

y ← a + b

z ← c + d

G

q ← a + b

r ← c + d

C

e ← b + 18

s ← a + b

u ← e + f

D e ← a + 17

t ← c + d

u ← e + f

E

v ← a + b

w ← c + d

x ← e + f

F

The Concept

• Apply local method to paths
through the EBBs

• Do {A,B}, {A,C,D}, & {A,C,E}

• Obtain reuse from ancestors

• Avoid re-analyzing A & C

• Does not help with F or G

*

EBB: A maximal set of blocks B1,
B2, …, Bn where each Bi, except B1,
has only exactly one predecessor
and that block is in the EBB.

Comp 412, Fall 2010 11

Superlocal Value Numbering

Efficiency

• Use A’s table to initialize tables for B & C

• To avoid duplication, use a scoped hash table

— A, AB, A, AC, ACD, AC, ACE, F, G

• Need a VN → name mapping to handle kills

— Must restore map with scope

— Adds complication, not cost

m ← a + b

n ← a + b

A

p ← c + d

r ← c + d

B

y ← a + b

z ← c + d

G

q ← a + b

r ← c + d

C

e ← b + 18

s ← a + b

u ← e + f

D e ← a + 17

t ← c + d

u ← e + f

E

v ← a + b

w ← c + d

x ← e + f

F

“kill” is a re-definition of
some name

Comp 412, Fall 2010 12

Superlocal Value Numbering

Efficiency

• Use A’s table to initialize tables for B & C

• To avoid duplication, use a scoped hash table

— A, AB, A, AC, ACD, AC, ACE, F, G

• Need a VN → name mapping to handle kills

— Must restore map with scope

— Adds complication, not cost

To simplify matters

• Need unique name for each definition

• Makes name → VN

• Use the SSA name space

m ← a + b

n ← a + b

A

p ← c + d

r ← c + d

B

y ← a + b

z ← c + d

G

q ← a + b

r ← c + d

C

e ← b + 18

s ← a + b

u ← e + f

D e ← a + 17

t ← c + d

u ← e + f

E

v ← a + b

w ← c + d

x ← e + f

F

The subscripted names from the earlier example
are an instance of the SSA name space.

“kill” is a re-definition of
some name

Comp 412, Fall 2010 13

SSA Name Space (locally)

Example (from earlier):

With VNs

a0
3 ← x0

1 + y0
2

✶ b0
3 ← x0

1 + y0
2

a1
4 ← 17

✶ c0
3 ← x0

1 + y0
2

Notation:

• While complex,
the meaning is
clear

Original Code

a0 ← x0 + y0

✶ b0 ← x0 + y0

a1 ← 17

✶ c0 ← x0 + y0

Renaming:

• Give each value a
unique name

• Makes it clear

Rewritten

a0
3 ← x0

1 + y0
2

✶ b0
3 ← a0

3

a1
4 ← 17

✶ c0
3 ← a0

3

Result:

• a0
3 is available

• Rewriting just
works

Comp 412, Fall 2010 14

SSA Name Space (in general)

Two principles

• Each name is defined by exactly one operation

• Each operand refers to exactly one definition

To reconcile these principles with real code

• Insert ϕ-functions at merge points to reconcile name space

• Add subscripts to variable names for uniqueness

x← ... x ← ...

...← x + ...

x0 ← ... x1 ← ...

x2 ←ϕ(x0,x1)

 x2 + ...

becomes

Comp 412, Fall 2010 15

Superlocal Value Numbering

m0 ← a + b

n0 ← a + b

A

p0 ← c + d

r0 ← c + d

B

r2 ← ϕ(r0,r1)

y0 ← a + b

z0 ← c + d

G

q0 ← a + b

r1 ← c + d

C

e0 ← b + 18

s0 ← a + b

u0 ← e + f

D e1 ← a + 17

t0 ← c + d

u1 ← e + f

E

e3 ← ϕ(e0,e1)

u2 ← ϕ(u0,u1)

v0 ← a + b

w0 ← c + d

x0 ← e + f

F

Our example in SSA form
• Φ-functions at join points

for names that need them
• Minimal set of Φ-functions

(see Chapter 9 in EaC)

Superlocal Value Numbering

The SVN Algorithm

Comp 412, Fall 2010 16

WorkList ← { entry block }

Empty ← new table

while (WorkList is not empty)

remove a block b from WorkList

SVN(b, Empty)

SVN(Block, Table)

t ← new table for Block, with Table linked as surrounding scope

LVN(Block, t)

for each successor s of Block

if s has just 1 predecessor

then SVN(s, t)

else if s has not been processed

then add s to WorkList

deallocate t

Table for base case

Blocks to process

Use LVN for the work

In the same EBB

Starts a new EBB

Assumes LVN has been parameterized
around block and table

Comp 412, Fall 2010 17

Superlocal Value Numbering

m0 ← a + b

n0 ← a + b

A

p0 ← c + d

r0 ← c + d

B

r2 ← (r0,r1)

y0 ← a + b

z0 ← c + d

G

q0 ← a + b

r1 ← c + d

C

e0 ← b + 18

s0 ← a + b

u0 ← e + f

D e1 ← a + 17

t0 ← c + d

u1 ← e + f

E

e3 ← (e0,e1)

u2 ← (u0,u1)

v0 ← a + b

w0 ← c + d

x0 ← e + f

F

With all the bells & whistles
• Find more redundancy
• Pay minimal extra cost
• Still does nothing for F & G

Superlocal techniques

• Some local methods extend
cleanly to superlocal scopes

• VN does not back up

• Backward motion causes probs

Loop Unrolling

Applications spend a lot of time in loops

• We can reduce loop overhead by unrolling the loop

• Eliminated additions, tests, and branches

— Can subject resulting code to strong local optimization!

• Only works with fixed loop bounds & few iterations

• The principle, however, is sound

• Unrolling is always safe, as long as we get the bounds right

Comp 412, Fall 2010 18

A Regional Technique

do i = 1 to 100 by 1
a(i) ← b(i) * c(i)
end

a(1) ← b(1) * c(1)
a(2) ← b(2) * c(2)
a(2) ← b(3) * c(3)
…

a(100) ← b(100) * c(100)

Complete unrolling

Loop Unrolling

Unrolling by smaller factors can achieve much of the benefit

Example: unroll by 4

Achieves much of the savings with lower code growth

• Reduces tests & branches by 25%

• LVN will eliminate duplicate adds and redundant expressions

• Less overhead per useful operation

But, it relied on knowledge of the loop bounds…

Comp 412, Fall 2010 19

do i = 1 to 100 by 1
a(i) ← b(i) * c(i)
end

do i = 1 to 100 by 4
a(i) ← b(i) * c(i)
a(i+1) ← b(i+1) * c(i+1)
a(i+2) ← b(i+2) * c(i+2)
a(i+3) ← b(i+3) * c(i+3)
end

Unroll by 4

Loop Unrolling

Unrolling with unknown bounds

Need to generate guard loops

Achieves most of the savings

• Reduces tests & branches by 25%

• LVN still works on loop body

• Guard loop takes some space

Can generalize to arbitrary upper & lower bounds, unroll factors

Comp 412, Fall 2010 20

do i = 1 to n by 1
a(i) ← b(i) * c(i)
end

i ← 1
do while (i+3 < n)

a(i) ← b(i) * c(i)
a(i+1) ← b(i+1) * c(i+1)
a(i+2) ← b(i+2) * c(i+2)
a(i+3) ← b(i+3) * c(i+3)
i ←i + 4
end

do while (i < n)
a(i) ← b(i) * c(i)
i ← i + 1
end

Unroll by 4

Loop Unrolling

One other unrolling trick

Eliminate copies at the end of a loop

Unroll by LCM of copy-cycle lengths

• Eliminates the copies, which were a naming artifact

• Achieves some of the benefits of unrolling

— Lower overhead, longer blocks for local optimization

• Situation occurs in more cases than you might suspect

Comp 412, Fall 2010 21

t1 ← b(0)
do i = 1 to 100 by 1

t2 ← b(i)
a(i) ← a(i) + t1 + t2
t1 ← t2

end

Unroll and rename

t1 ← b(0)
do i = 1 to 100 by 2

t2 ← b(i)
a(i) ← a(i) + t1 + t2
t1 ← b(i+1)
a(i+1) ← a(i+1) + t2 + t1

end

This result has been rediscovered many times. [Kennedy’s thesis]

