RICE COMP 412
FALL 2010
Code Optimization, Part IT
Regional Technigues

Comp 412

Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved.

Students enrolled in Comp 412 at Rice University have explicit permission to make copies
of these materials for their personal use.

Faculty from other educational institutions may use these materials for nonprofit
educational purposes, provided this copyright notice is preserved.

Last Lecture

Introduced concept of a redundant expression

An expression, x+y, is redundant at point p if, along each path from
the procedure’s entry point to p, x+y has already been evaluated and
neither x nor y has been redefined.

* If x+yis redundant at p, we can save the results of those
earlier evaluations and reuse them at p, avoiding evaluation

* TInasingle block, we need only consider one such path

* We developed an algorithm for redundancy elimination in a
single basic block

* Two pieces to the problem

— Proving that x+y is redundant

— Rewriting the code to eliminate the redundant evaluation
Value numbering does both for straightline code

Comp 412, Fall 2010 2

Local Value Numbering

The LVN Algorithm, with bells & whistles

Block is a sequence of n

fori« Oto n-1 operations of the form

1. get the value numbers V; and V.,for L; and R; Ti—LOpR

2.if L; and R; are both constant then Constant folding
evaluate Li Op; R;, assignitto T;, and mark T, as a constant

3. If Li Op; R; matches an identity then Algebraic identities
replace it with a copy operation or an assignment

4. if Op; commutes and V, >V, then Commutativity

swap V; and V,
5. construct a hash key <V4,0p;,V,>
6. if the hash key is already present in the table then
replace operation | with a copy into T;and mark T; with the VN
else
insert a new VN into table for hash key & mark T, with the VN

Comp 412, Fall 2010 3

Local Value Numbering

Am<—a+b

Missed opportunities

n—a+b
/ \ (need stronger methods)
B C
p < c +d g a-+b .
r e c+d - LVN finds these redundant ops
D e « b + 18 E e « a + 17
s «a+tb t «c+ d
u—e+ £ u—e+ £
\ e
F v —a+b
w e c + d
X « e + £
L Local Value Numbering

Z « Cc + d

Comp 412, Fall 2010

* 1block at atime
* Strong local results
* No cross-block effects

Terminology

Am<—a+b
n—a-+>,

p—~c + d Cq<—a+b
r — c +d r « c + d

D| ¢ . b + 18
S<—a+b
u« e + £

Control-flow graph (CFG)
* Nodes for basic blocks
* Edges for branches

* Basis for much of
program analysis &
transformation

e « a + 17
t « ¢ + d
U« e + £

W« c + d
X « e + f

This CFG, G = (N,E)

G y<—a+b
Z « Cc + d

Comp 412, Fall 2010

* N={ABCD,EFG}

* E={(AB).(A0),(B.6)(CD)
(C.E).(D.F).(E.F).(F.E)}

* INI=7,]E] =8

Scope of Optimization

In scanning and parsing, "scope” refers to a region of the code
that corresponds to a distinct name space.

In optimization "scope” refers to a region of the code that is
subject to analysis and transformation.

* Notions are somewhat related
* Connection is not necessarily intuitive

Dif ferent scopes introduces different challenges & different
opportunities

Historically, optimization has been performed at several
distinct scopes.

Comp 412, Fall 2010 6

Scope of Optimization

Local optimization

A basic block is a maximal length
sequence of straightline code.

* Operates entirely within a single basic block
* Properties of block lead to strong optimizations

Regional optimization

* Operate on a region in the CFG that contains multiple blocks
* Loops, trees, paths, extended basic blocks

Whole procedure optimization (intraprocedural)
* Operate on entire CFG for a procedure
* Presence of cyclic paths forces analysis then transformation

Whole program optimization (interprocedural)
* Operate on some or all of the call graph (multiple procedures)
* Must contend with call/return & parameter binding

Comp 412, Fall 2010 7

A Comp 412 Fairy Tale

We would like to believe optimization developed in an
orderly fashion

* Local methods led to regional methods
* Regional methods led to global methods
* Global methods led to interprocedural methods

It did not happen that way

* First compiler, FORTRAN, used both local & global methods
* Development has been scattershot & concurrent

* Scope appears to relate to the inefficiency being attacked,
rather than the refinement of the inventor.

Comp 412, Fall 2010

A Regional Technique

Superlocal Value Numbering

r —c + d

/ Am<—a+b
n—a-+=>D-
Bp<—c+d Cq<—a+b

r — c + d

N\

EBB: A maximal set of blocks B;,
B, .., B, where each B;, except B,

has only exactly one predecessor
and that block is in the EBB.

Dl e - b+ 18 E[¢ « a + 17
s «a+b t « ¢c +d
u e+ f u— e+ f
X — /
F V « a + b
"< 9 | [{AB,C.D,E}isan EBB
L « It has 3 paths: (A,B), (A,C,D),
G| v-awe & (A.CE)

Z « Cc + d

Comp 412, Fall 2010

* Can sometimes treat each
path as if it were a block

{F} & {G} are degenerate EBBs
Superlocal: "applied to an EBB"

Superlocal Value Numbering

Al me-a+b EBB: A maximal set of blocks B,
ne—a+hb B,, ..., B, where each B;, except By,
/ \ has only exactly one predecessor
B[0 - c+a C[g-2+b and that block is in the EBB.
r —« c +d r —« c +d
Dl ¢ - b + 18 El| ¢ — 2 + 17
s «a + b t « c+d
u«— e + £ u«—e + £
\ e
F Vv « a + b
woe e+ d The Concept
X « e + f
7 * Apply local method to paths
G through the EBBs
y «a +b
7 o4 * Do{AB} {AcCD} &{ACE}

* Obtain reuse from ancestors
* Avoid re-analyzing A & C
* Does not help with For 6

Comp 412, Fall 2010 * 10

Superlocal Value Numbering

Efficiency
* Use A's table to initialize tables for B & C
* To avoid duplication, use a scoped hash table Wl @ e CETITED O
some name
— A, AB, A, AC, ACD, AC, ACE, F,G
* Needa VN — name mapping to handle kills
— Must restore map with scope Almoarn
— Adds complication, not cost /
B p—c+d C qg—a+b
r c + d r c + d
D e « b + 18 E e —«a + 17
s «—a +b t«c+d
\
F Vv —«a + b
/
G y «a + b

zZ « Cc + d

Comp 412, Fall 2010 11

Superlocal Value Numbering

Efficiency
* Use A's table to initialize tables for B & C
* To avoid duplication, use a scoped hash table s a re-definition of
— A, AB, A, AC, ACD, AC, ACE, F,G
* Needa VN — name mapping to handle kills
— Must restore map with scope Al m—awn
— Adds complication, not cost o / o
To simplify matters D[-5 15 |
* Need unique name for each definition oo ?\ ool
* Makes name — VN Fl v-ere
* Use the SSA name space —
G y « a+b

Comp 412, Fall 2010

zZ « Cc + d

S

The subscripted names from the earlier example | 4,
are an instance of the SSA name space.

SSA Name Space (locally)

Example (from earlier):

Original Code With VNs Rewritten
< Xo * Yo ap> — Xo' + Yo’ ap> — X' + Yo
* Do X + Yo X Do Xt + Yp? * by ag?
a; «— 17 a;*— 17 a;*— 17
* Co— X tYo X C® Xt +Yo? X Co? e ay?
Renaming: Notation: Result:
* Give each value a * While complex, * ay3 is available
unique name the meaning is * Rewriting just
* Makes it clear clear works

Comp 412, Fall 2010 13

SSA Name Space (in general)

Two principles
* Each name is defined by exactly one operation
* Each operand refers to exactly one definition

To reconcile these principles with real code
* TInsert ¢-functions at merge points to reconcile name space
* Add subscripts to variable names for uniqueness

X0

\ / becomes \ /

X, —0(x0,%1)

eXZ + eee

Comp 412, Fall 2010 14

Superlocal Value Numbering

A

m, —a t+ b

n, —a +>b

/

Py « ¢ + d

~

Our example in SSA form

* @-functions at join points
for names that need them

C

Comp 412, Fall 2010

g, <« a + b
rl<—C+d

* Minimal set of ®-functions
(see Chapter 9 in EaC)

eo<—b+18

E

e <« a + 17
tO ~c + d
u <« e + £

\ i
F e; « ¢(eq,eq)
u, « ¢ (uy,uy)
VO — a + b
WO — C + d
XO — e + f
r, « ¢ (ry,rp)

15

Superlocal Value Numbering

The SVN Algorithm

WorkList — { entry block }
Empty < new table

while (WorkListis not empty)
remove a block b from WorkList

SVN(b, Empty)

Blocks to process

Table for base case

SVN(Block, Table)
t — new table for Block, with Table linked as surrounding scope

LVN(Block, t) Use LVN for the work

for each successor s of Block
if s has just 1 predecessor
then SVN(' s, t)
else if s has not been processed
then add s to WorkList

In the same EBB

Starts a new EBB

deallocate t

Assumes LVN has been parameterized
Comp 412, Fall 2010 16
w around block and table

Superlocal Value Numbering

With all the bells & whistles

A m, «a + b]
n, —a+b * Find more redundancy
/ \ * Pay minimal extra cost
B[o, —c + d Clq - a+0b * Still does nothing for F & G
r, — C + d r, « C + d
Dl ¢, - b + 18 El ¢, - 2 + 17
s, —a+b t, —c+d
u, <« e + £ u, « e + £t
\ i
F e; « ¢ (eg,eq)
u, — ¢ (up,u;)
Yoot Superlocal techniques
W,
X, — & + * Some local methods extend
—— cleanly to superlocal scopes
Gl v, « ¢(ry 1) * VN does not back up
Yo < @+ b * Backward motion causes probs

Comp 412, Fall 2010

17

A Regional Technique
Loop Unrolling

Applications spend a lot of time in loops
* We can reduce loop overhead by unrolling the loop

doi=1to 100 by 1 a(l) <« b(1)*c(1)

() b() *c) NP a(2) — b(2)*c(2)
Zn’d e 2(2) <—b(3)*g(3)

Complete unrolling

a(100) — b(100) * ¢(100)

* Eliminated additions, tests, and branches
— Can subject resulting code to strong local optimization!
* Only works with fixed loop bounds & few iterations
* The principle, however, is sound
* Unrolling is always safe, as long as we get the bounds right

Comp 412, Fall 2010 18

Loop Unrolling

Unrolling by smaller factors can achieve much of the benefit

Example: unroll by 4

do i =1to 100 by 1 doi=1to 100 by 4

a(i) - b(i) *c(i) W) o) b()* (i)

end a(i+1) < b(i+1) * c(i+1)

dneoll by 4 a(i+2) — b(i+2) * ¢(i+2)
a(i+3) <« b(i+3) * ¢(i+3)
end

Achieves much of the savings with lower code growth

* Reduces tests & branches by 25%

* LVN will eliminate duplicate adds and redundant expressions
* Less overhead per useful operation

But, it relied on knowledge of the loop bounds...

Comp 412, Fall 2010 19

Loop Unrolling

Unrolling with unknown bounds i1

do
Need to generate guard loops

doi=1tonby]l
a(i) ~ b()* (i) -

end
Unroll by 4

do

Achieves most of the savings

* Reduces tests & branches by 25%
* LVNstill works on loop body

* Guard loop takes some space

while (i+3 <n)

a(i) <« b(i)* c(i)
a(i+1) < b(i+1) * c(i+1)
a(i+2) <« b(i+2) * ¢(i+2)
a(i+3) < b(i+3) * ¢(i+3)
i —i+4

end

while (i < n)

a(i) <« b(i)* c(i)

[« i+1

end

Can generalize to arbitrary upper & lower bounds, unroll factors

Comp 412, Fall 2010

20

Loop Unrolling

One other unrolling trick

Eliminate copies at the end of a loop

t1 < b(0) t1 — b(0)
do i =1to 100 by 1 do i =1to 100 by 2
t2 < b(i) ‘ t2 < b(i)
Cl(l) «— a(’) +tl +t2 Unroll and rename a(’) — G(I) +tl+t2
tl — t2 t1 — b(i+1)
end a(i+1) < a(i+1) + t2 + t1
end

Unroll by LCM of copy-cycle lengths
* Eliminates the copies, which were a naming artifact
* Achieves some of the benefits of unrolling
— Lower overhead, longer blocks for local optimization
* Situation occurs in more cases than you might suspect

Comp 412, Fall 2010

This result has been rediscovered many times. [Kennedy's thesis] | 21

