
Context-sensitive Analysis
or

Semantic Elaboration

Comp 412

Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved.

Students enrolled in Comp 412 at Rice University have explicit permission to make copies
of these materials for their personal use.

Faculty from other educational institutions may use these materials for nonprofit
educational purposes, provided this copyright notice is preserved.

COMP 412

FALL 2010

Comp 412, Fall 2010 2

Beyond Syntax

There is a level of correctness that is deeper than grammar

To generate code, we need to understand its meaning !

fie(a,b,c,d) {
int a, b, c, d;
…

}

fee() {
int f[3],g[0], h, i, j, k;

char *p;

fie(h,i,“ab”,j, k);
k = f * i + j;
h = g[17];
printf(“<%s,%s>.\n”,p,q);
p = 10;

}

What is wrong with this program?
(let me count the ways …)

• number of args to fie()

• declared g[0], used g[17]

• “ab” is not an int

• wrong dimension on use of f

• undeclared variable q

• 10 is not a character string

All of these are

“deeper than syntax”

Comp 412, Fall 2010 3

Beyond Syntax

To generate code, the compiler needs to answer many questions

• Is “x” a scalar, an array, or a function? Is “x” declared?

• Are there names that are not declared? Declared but not used?

• Which declaration of “x” does a given use reference?

• Is the expression “x * y + z” type-consistent?

• In “a[i,j,k]”, does a have three dimensions?

• Where can “z” be stored? (register, local, global, heap, static)

• In “f ← 15”, how should 15 be represented?

• How many arguments does “fie()” take? What about “printf ()” ?

• Does “*p” reference the result of a “malloc()” ?

• Do “p” & “q” refer to the same memory location?

• Is “x” defined before it is used?

These are beyond the expressive power of a CFG

Comp 412, Fall 2010 4

Beyond Syntax

These questions are part of context-sensitive analysis
• Answers depend on values, not parts of speech
• Questions & answers involve non-local information
• Answers may involve computation

How can we answer these questions?

• Use formal methods
— Context-sensitive grammars?

— Attribute grammars? (attributed grammars?)

• Use ad-hoc techniques
— Symbol tables

— Ad-hoc code (action routines)

In parsing, formalisms won.

In context-sensitive analysis, ad-hoc techniques dominate practice.

Comp 412, Fall 2010 5

Beyond Syntax

Telling the story

• We will study the formalism — an attribute grammar

— Clarify many issues in a succinct and immediate way

— Separate analysis problems from their implementations

• We will see that the problems with attribute grammars
motivate actual, ad-hoc practice

— Non-local computation

— Need for centralized information

• Some folks still argue for attribute grammars

— Knowledge is power

— Information is immunization

We will cover attribute grammars, then move on to ad-hoc ideas

Comp 412, Fall 2010 6

Attribute Grammars

What is an attribute grammar?

• A context-free grammar augmented with a set of rules

• Each symbol in the derivation (or parse tree) has a set of
named values, or attributes

• The rules specify how to compute a value for each attribute
— Attribution rules are functional; they uniquely define the value

Example grammar

This grammar describes
signed binary numbers

We would like to augment it
with rules that compute the
decimal value of each valid
input string

1 Number → Sign List

2 Sign → +

3 | -

4 List → List Bit

5 | Bit

6 Bit → 0

7 | 1

Comp 412, Fall 2010 7

Examples

We will use these two examples throughout the lecture

Number → Sign List

→ Sign Bit

→ Sign 1

→ – 1

Number

List

Bit

1

Sign

–

For “–1”

Number → Sign List

→ Sign List Bit

→ Sign List 1

→ Sign List Bit 1

→ Sign List 0 1

→ Sign Bit 0 1

→ Sign 1 0 1

→ – 101

Number

ListSign

– Bit

1

List

Bit

0

List

Bit

1

For “–101”

Comp 412, Fall 2010 8

Attribute Grammars

Add rules to compute the decimal value of a signed binary number

Symbol Attributes

Number val

Sign neg

List pos, val

Bit pos, val

Productions Attribution Rules

Number → Sign List List.pos  0

if Sign.neg

then Number.val  - List.val

else Number.val  List.val

Sign → + Sign.neg  false

| - Sign.neg true

List0 → List1 Bit List1.pos  List0.pos + 1

Bit.pos  List0.pos

List0.val  List1.val + Bit.val

| Bit Bit.pos  List.pos

List.val  Bit.val

Bit → 0 Bit.val  0

| 1 Bit.val  2Bit.pos

Comp 412, Fall 2010 9

Back to the Examples

Number

List

Bit

1

Sign

–

neg  true

Bit.pos  0

Bit.val  2Bit.pos  1

List.pos  0

List.val  Bit.val  1

Number.val  – List.val  –1For “–1” One possible evaluation order:

1 List.pos

2 Sign.neg

3 Bit.pos

4 Bit.val

5 List.val

6 Number.val

Other orders are possible

Knuth suggested a data-flow model for evaluation

• Independent attributes first

• Others in order as input values become available

Rules + parse tree imply an
attribute dependence graph

Evaluation order
must be consistent
with the attribute
dependence graph

Comp 412, Fall 2010 10

Back to the Examples

This is the complete
attribute dependence
graph for “–101”.

It shows the flow of all
attribute values in the
example.

Some flow downward
→ inherited attributes

Some flow upward
→ synthesized attributes

A rule may use attributes
in the parent, children, or
siblings of a node

Number

Sign

–

List

Bit

1

List

Bit

0

List

Bit

1

pos: 0

val: 1

pos: 2

val: 4

pos: 1

val: 0

pos: 2

val: 4

pos: 1

val: 4

pos: 0

val: 5

val: –5

neg: true

For “–101”

Comp 412, Fall 2010 11

The Rules of the Game

• Attributes associated with nodes in parse tree

• Rules are value assignments associated with productions

• Attribute is defined once, using local information

• Label identical terms in production for uniqueness

• Rules & parse tree define an attribute dependence graph
— Graph must be non-circular

This produces a high-level, functional specification

Synthesized attribute
— Depends on values from children

Inherited attribute

— Depends on values from siblings & parent

N.B.: AG is a specification
for the computation, not an
algorithm

Comp 412, Fall 2010 12

Using Attribute Grammars

Attribute grammars can specify context-sensitive actions

• Take values from syntax

• Perform computations with values

• Insert tests, logic, …

We want to use both kinds of attributes

Synthesized Attributes

• Use values from children
& from constants

• S-attributed grammars

• Evaluate in a single
bottom-up pass

Good match to LR parsing

Inherited Attributes

• Use values from parent,
constants, & siblings

• Directly express context

• Can rewrite to avoid them

• Thought to be more natural

Not easily done at parse time

Comp 412, Fall 2010 13

Evaluation Methods

Dynamic, dependence-based methods

• Build the parse tree

• Build the dependence graph

• Topological sort the dependence graph

• Define attributes in topological order

Rule-based methods (treewalk)

• Analyze rules at compiler-generation time

• Determine a fixed (static) ordering

• Evaluate nodes in that order

Oblivious methods (passes, dataflow)

• Ignore rules & parse tree

• Pick a convenient order (at design time) & use it

Comp 412, Fall 2010 14

Back to the Example

Number

Sign List

BitList

BitList

Bit

–

1

0

1 For “–101”

Syntax Tree

Comp 412, Fall 2010 15

Back to the Example

Number

Sign List

BitList

BitList

Bit

–

1

0

1

pos: 1

val: 0

pos: 0

val: 1

pos: 2

val: 4

pos: 2

val: 4

pos: 1

val: 4

pos: 0

val: 5

val: –5

neg: true

For “–101”

Attributed Syntax Tree

Comp 412, Fall 2010 16

Back to the Example

Number

Sign List

BitList

BitList

Bit

–

1

0

1

pos: 1

val: 0

pos: 0

val: 1

pos: 2

val: 4

pos: 2

val: 4

pos: 1

val: 4

pos: 0

val: 5

val: –5

neg: true

For “–101”

Inherited Attributes

Comp 412, Fall 2010 17

Back to the Example

Number

Sign List

BitList

BitList

Bit

–

1

0

1

pos: 1

val: 0

pos: 0

val: 1

pos: 2

val: 4

pos: 2

val: 4

pos: 1

val: 4

pos: 0

val: 5

val: –5

neg: true

For “–101”

Synthesized attributes

Val draws from children & the same node.

Comp 412, Fall 2010 18

Back to the Example

Number

Sign List

BitList

BitList

Bit

–

1

0

1

pos: 1

val: 0

pos: 0

val: 1

pos: 2

val: 4

pos: 2

val: 4

pos: 1

val: 4

pos: 0

val: 5

val: –5

neg: true

For “–101”

More Synthesized attributes

Comp 412, Fall 2010 19

Back to the Example

Number

Sign List

BitList

BitList

Bit

–

1

0

1

pos: 1

val: 0

pos: 0

val: 1

pos: 2

val: 4

pos: 2

val: 4

pos: 1

val: 4

pos: 0

val: 5

val: –5

neg: true

For “–101”

& then peel away the parse tree ...

If we show the computation ...

Comp 412, Fall 2010 20

Back to the Example

All that is left is the attribute
dependence graph.

This succinctly represents the
flow of values in the problem
instance.

The dynamic methods sort this
graph to find independent values,
then work along graph edges.

The rule-based methods try to
discover “good” orders by
analyzing the rules.

The oblivious methods ignore the
structure of this graph.

The dependence graph must be acyclic

–

1

0

1

pos: 1

val: 0

pos: 0

val: 1

pos: 2

val: 4

pos: 2

val: 4

pos: 1

val: 4

pos: 0

val: 5

val: –5

neg: true

For “–101”

Comp 412, Fall 2010 21

Circularity

We can only evaluate acyclic instances

• General circularity testing problem is inherently exponential!

• We can prove that some grammars can only generate instances
with acyclic dependence graphs
— Largest such class is “strongly non-circular” grammars (SNC)

— SNC grammars can be tested in polynomial time

— Failing the SNC test is not conclusive

Many evaluation methods discover circularity dynamically

⇒ Bad property for a compiler to have

SNC comes from Kennedy & Warren, POPL 1976

Comp 412, Fall 2010 22

A Circular Attribute Grammar

Productions Attribution Rules

Number → List List.a ← 0

List0 → List1 Bit List1.a ← List0.a + 1

List0.b ← List1.b

List1.c ← List1.b + Bit.val

| Bit List0.b ← List0.a + List0.c + Bit.val

Bit → 0 Bit.val ← 0

| 1 Bit.val ← 1

Remember, the circularity is in the attribution rules, not the underlying CFG

Comp 412, Fall 2010 23

Circular Grammar Example

Number

Sign List

BitList

BitList

Bit

–

1

0

1 For “–101”

a: 0
b:
c:

a:
b:
c:

a:
b:
c:

val:

val:

val:

Productions Attribution Rules

Number → List List.a  0

List0 → List1

Bit
List1.a  List0.a + 1

List0.b  List1.b

List1.c  List1.b +
Bit.val

| Bit List0.b  List0.a +
List0.c + Bit.val

Bit → 0 Bit.val  0

| 1 Bit.val  1

Comp 412, Fall 2010 24

Circular Grammar Example

Number

Sign List

BitList

BitList

Bit

–

1

0

1 For “–101”

a: 0
b:
c:

a:
b:
c:

a:
b:
c:

val:

val:

val:

Productions Attribution Rules

Number → List List.a  0

List0 → List1

Bit
List1.a  List0.a + 1

List0.b  List1.b

List1.c  List1.b +
Bit.val

| Bit List0.b  List0.a +
List0.c + Bit.val

Bit → 0 Bit.val  0

| 1 Bit.val  1

For “–101”

Comp 412, Fall 2010 25

Circular Grammar Example

Number

Sign List

BitList

BitList

Bit

–

1

0

1

a: 0
b:
c:

a:
b:
c:

a:
b:
c:

val:

val:

val:

Productions Attribution Rules

Number → List List.a  0

List0 → List1

Bit
List1.a  List0.a + 1

List0.b  List1.b

List1.c  List1.b +
Bit.val

| Bit List0.b  List0.a +
List0.c + Bit.val

Bit → 0 Bit.val  0

| 1 Bit.val  1

For “–101”

Comp 412, Fall 2010 26

Circular Grammar Example

Number

Sign List

BitList

BitList

Bit

–

1

0

1

a: 0
b:
c:

a:
b:
c:

a:
b:
c:

val:

val:

val:

Productions Attribution Rules

Number → List List.a  0

List0 → List1

Bit
List1.a  List0.a + 1

List0.b  List1.b

List1.c  List1.b +
Bit.val

| Bit List0.b  List0.a +
List0.c + Bit.val

Bit → 0 Bit.val  0

| 1 Bit.val  1

For “–101”

Comp 412, Fall 2010 27

Circular Grammar Example

Number

Sign List

BitList

BitList

Bit

–

1

0

1

a: 0
b:
c:

a:
b:
c:

a:
b:
c:

val:

val:

val:

Here is the circularity …

Productions Attribution Rules

Number → List List.a  0

List0 → List1

Bit
List1.a  List0.a + 1

List0.b  List1.b

List1.c  List1.b +
Bit.val

| Bit List0.b  List0.a +
List0.c + Bit.val

Bit → 0 Bit.val  0

| 1 Bit.val  1

For “–101”

Comp 412, Fall 2010 28

Circular Grammar Example

Number

Sign List

BitList

BitList

Bit

–

1

0

1

a: 0
b:
c:

a:
b:
c:

a:
b:
c:

val:

val:

val:

Here is the circularity …

Productions Attribution Rules

Number → List List.a  0

List0 → List1

Bit
List1.a  List0.a + 1

List0.b  List1.b

List1.c  List1.b +
Bit.val

| Bit List0.b  List0.a +
List0.c + Bit.val

Bit → 0 Bit.val  0

| 1 Bit.val  1

Comp 412, Fall 2010 29

Circularity — The Point

• Circular grammars have indeterminate values

— Algorithmic evaluators will fail

• Noncircular grammars evaluate to a unique set of values

• Circular grammar might give rise to noncircular instance

— Probably shouldn’t bet the compiler on it …

⇒ Should (undoubtedly) use provably noncircular grammars

Remember, we are studying AGs to gain insight

• We should avoid circular, indeterminate computations

• If we stick to provably noncircular schemes, evaluation
should be easier

Comp 412, Fall 2010 30

An Extended Attribute Grammar Example

Grammar for a basic block (§ 4.3.3)

Let’s estimate cycle counts

• Each operation has a COST

• Add them, bottom up

• Assume a load per value

• Assume no reuse

Simple problem for an AG

Hey, that is a practical
application!

1 Block0 → Block1 Assign

2 | Assign

3 Assign0 → Ident = Expr ;

4 Expr0 → Expr1 + Term

5 | Expr1 - Term

6 | Term

7 Term0 → Term1 * Factor

8 | Term1 / Factor

9 | Factor

10 Factor → (Expr)

11 | Number

12 | Ident

Comp 412, Fall 2010 31

An Extended Example (continued)

These are all
synthesized
attributes !

Values flow
from rhs to
lhs in prod’ns

1 Block0 → Block1 Assign Block0.cost  Block1.cost +
Assign.cost

2 | Assign Block0.cost  Assign.cost

3 Assign0 → Ident = Expr ; Assign.cost  COST(store) +
Expr.cost

4 Expr0 → Expr1 + Term Expr0.cost  Expr1.cost +
COST(add) + Term.cost

5 | Expr1 - Term Expr0.cost  Expr1.cost +
COST(sub) + Term.cost

6 | Term Expr0.cost  Term.cost

7 Term0 → Term1 * Factor Term0.cost  Term1.cost +
COST(mult) + Factor.cost

8 | Term1 / Factor Term0.cost  Term1.cost +
COST(div) + Factor.cost

9 | Factor Term0.cost  Factor.cost

10 Factor → (Expr) Factor.cost  Expr.cost

11 | Number Factor.cost  COST(loadI)

12 | Ident Factor.cost  COST(load)

Comp 412, Fall 2010 32

An Extended Example (continued)

Properties of the example grammar

• All attributes are synthesized ⇒ S-attributed grammar

• Rules can be evaluated bottom-up in a single pass
— Good fit to bottom-up, shift/reduce parser

• Easily understood solution

• Seems to fit the problem well

What about an improvement?

• Values are loaded only once per block (not at each use)

• Need to track which values have been already loaded

Comp 412, Fall 2010 33

Adding load tracking

• Need sets Before and After for each production

• Must be initialized, updated, and passed around the tree

A Better Execution Model

10 Factor → (Expr) Factor.cost  Expr.cost
Expr.before  Factor.before
Factor.after  Expr.after

11 | Number Factor.cost  COST(loadI)
Factor.after  Factor.before

12 | Ident If (Ident.name  Factor.before)
then

Factor.cost  COST(load)
Factor.after  Factor.before

 { Ident.name }
else

Factor.cost  0
Factor.after  Factor.before

This version is much more complex

Comp 412, Fall 2010 34

• Load tracking adds complexity

• But, most of it is in the “copy rules”

• Every production needs rules to copy Before & After

A sample production

These copy rules multiply rapidly

Each creates an instance of the set

Lots of work, lots of space, lots of rules to write

A Better Execution Model

4 Expr0 → Expr1 + Term Expr0.cost  Expr1.cost +
COST(add) + Term.cost

Expr1.before  Expr0.before
Term.before  Expr1.before
Expr0.after  Term.after

Comp 412, Fall 2010 35

What about accounting for finite register sets?

• Before & After must be of limited size

• Adds complexity to Factor→Identifier

• Requires more complex initialization

Jump from tracking loads to tracking registers is small

• Copy rules are already in place

• Some local code to perform the allocation

An Even Better Model

Comp 412, Fall 2010 36

And Its Extensions

Tracking loads

• Introduced Before and After sets to record loads

• Added ≥ 2 copy rules per production
— Serialized evaluation into execution order

• Made the whole attribute grammar large & cumbersome

Finite register set

• Complicated one production (Factor → Identifier)

• Needed a little fancier initialization

• Changes were quite limited

Why is one change hard and the other easy?

Comp 412, Fall 2010 37

The Moral of the Story

• Non-local computation needed lots of supporting rules

• Complex local computation was relatively easy

The Problems

• Copy rules increase cognitive overhead

• Copy rules increase space requirements
— Need copies of attributes

— Can use pointers, for even more cognitive overhead

• Result is an attributed tree (somewhat subtle points)
— Must build the parse tree

— Either search tree for answers or copy them to the root

A good rule of thumb is
that the compiler touches
all the space it allocates,
usually multiple times

