RICE COMP 412
FALL 2010
Context-sensitive Analysis

or
Semantic Elaboration

Comp 412

Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved.

Students enrolled in Comp 412 at Rice University have explicit permission o make copies
of these materials for their personal use.

Faculty from other educational institutions may use these materials for nonprofit
educational purposes, provided this copyright notice is preserved.

Beyond Syntax

There is a level of correctness that is deeper than grammar

fie(a,b,c,d) { What is wrong with this program?
inta,b,c,d; (let me count the ways ...)
* number of args to fie()

iee(){ * declared g[0], used g[17]
int f[3],¢[0], h, i, j, k; * "ab” is not an int
char *p; * wrong dimension on use of f
fie(h,i,“ab”}j, k); * undeclared variable g
Ezgl';]’;” * 10 is not a character string
E”znr;(; <%s,%s>.\",p,q); All of these are

} "deeper than syntax”

To generate code, we need to understand its meaning !

Comp 412, Fall 2010 2

Beyond Syntax

To generate code, the compiler needs to answer many questions
* TIs"x"ascalar, an array, or a function? Is "x"declared?

* Are there names that are not declared? Declared but not used?
* Which declaration of "x" does a given use reference?

* TIs the expression "x * y + z" type-consistent?

* In"q[i,jk]", does ahave three dimensions?

e Wherecan "z" be stored? (register, local, global, heap, static)
* In"f < 15" how should 15 be represented?

* How many arguments does "fie()" take? What about "printf ()" ?

* Does "*p" reference the result of a "malloc()" ?

. Do “p" & "q" refer to the same memory location?

. "x" defmed before it is used?

These are beyond the expressive power of a CFG
Comp 412, Fall 2010 3

Beyond Syntax

These questions are part of context-sensitive analysis
* Answers depend on values, not parts of speech

* Questions & answers involve non-local information

* Answers may involve computation

How can we answer these questions?

e Use formal methods
— Context-sensitive grammars?
— Attribute grammars? (attributed grammars?)

* Use ad-hoc techniques
— Symbol tables
— Ad-hoc code (action routines)

In parsing, formalisms won.
In context-sensitive analysis, ad-hoc techniques dominate practice.

Comp 412, Fall 2010 4

Beyond Syntax

Telling the story

* Wewill study the formalism — an attribute grammar
— Clarify many issues in a succinct and immediate way
— Separate analysis problems from their implementations

* Wewill see that the problems with attribute grammars
motivate actual, ad-hoc practice

— Non-local computation
— Need for centralized information

* Some folks still argue for attribute grammars
— Knowledge is power
— Information is immunization

We will cover attribute grammars, then move on to ad-hoc ideas

Comp 412, Fall 2010 5

Attribute Grammars

What is an attribute grammar?
* A context-free grammar augmented with a set of rules

* Each symbol in the derivation (or parse tree) has a set of
named values, or attributes

* The rules specify how to compute a value for each attribute
— Aftribution rules are functional; they uniquely define the value

Example grammar
1 Number Sign List : :

e - oI This grammar describes
2 Sign — o+ .)
. - sighed binary numbers
4 List _ List Bit We would like to augment it
5 | Bit with rules that compute the
6 Bit 0 decimal value of each valid
- ' _I) 1 input string

Comp 412, Fall 2010 6

Examples

For “-1” For “-101”
Number — Sign List Number — Sign List
— Sign Bit — Sign List Bit
— Sign 1 — Sign List 1
- - 1 — Sign List Bit 1
— Sign List 0 1
@ — Sign Bit 0 1
— S/gn 701
-

@
¢

We will use these two examples throughout the lecture
Comp 412, Fall 2010 7

Attribute Grammars

Add rules o compute the decimal value of a sighed binary number

Productions

Attribution Rules

Number -

S ign -
|
|

Bit —

Sign List

+

List; Bit

Bit

List.pos < O

if Sign.neg
then Number.val < - List.val
else Number.val < List.val

Sign.neg < false

Sign.neg «true

List,.pos < List,.pos + 1
Bit.pos < List,.pos

List,.val < List,.val + Bit.val

Bit.pos < List.pos
List.val < Bit.val

Bit.val < 0

Bit.val <« 28it.pos

Comp 412, Fall 2010

Symbol Attributes
Number val
Sign neg
List pos, val
Bit pos, val
8

Rules + parse tree imply an
attribute dependence graph

Back to the Exampl

For “-1” Number.val « - Listval =-1

Listpos «0
List.val « Bitval =1
@ Bit.pos « 0
l Bit.val « 2Bitpos =1

1

One possible evaluation order:

1 List.pos

2 Sign.neg

3 Bit.pos

4 Bit.val

5 List.val

6 Number.val

Other orders are possible

Knuth suggested a data-flow model for evaluation

* Independent attributes first

* Others in order as input values become available

Comp 412, Fall 2010

Evaluation order

must be consistent
with the attribute
dependence graph

Back to the Examples

For “-101”

This is the complete

attribute dependence
graph for "-101".

It shows the flow of all
attribute values in the
example.

Some flow downward
— inherited attributes

Some flow upward
— synthesized attributes
A rule may use attributes

in the parent, children, or
siblings of a node

Comp 412, Fall 2010

10

The Rules of the Game

* Afttributes associated with nodes in parse tree

* Rules are value assignments associated with productions
* Afttribute is defined once, using local information

* Label identical ferms in production for uniqueness

* Rules & parse tree define an attribute dependence graph
— Graph must be non-circular

This produces a high-level, functional specification

Synthesized attribute N.B.: AG is a specification
— Depends on values from children for the computation, not an
Inherited attribute algorithm

— Depends on values from siblings & parent

Comp 412, Fall 2010 11

Using Attribute Grammars

Attribute grammars can specify context-sensitive actions

* Take values from syntax

* Perform computations with values

* Insert tests, logic, ..

Synthesized Attributes

* Use values from children
& from constants

* S-attributed grammars

* Evaluate in a single
bottom-up pass

Good match to LR parsing

Inherited Attributes

* Use values from parent,
constants, & siblings

* Directly express context
* Can rewrite o avoid them
* Thought fo be more natural
Not easily done at parse time

We want to use both kinds of attributes

Comp 412, Fall 2010

12

Evaluation Methods

Dynamic, dependence-based methods
* Build the parse tree

* Build the dependence graph

* Topological sort the dependence graph

* Define attributes in topological order

Rule-based methods (treewalk)
* Analyze rules at compiler-generation time

* Determine a fixed (static) ordering

* Evaluate nodes in that order

Oblivious methods (passes, dataflow)
e Ignore rules & parse tree
* Pick a convenient order (at design time) & use it

Comp 412, Fall 2010 . 13

Back to the Example

Pt

|

(2 6\

For “-101”

Comp 412, Fall 2010 14

Back to the Example

For “-101”

Comp 412, Fall 2010

Attributed Syntax Tree

15

Back to the Example

val: -5
n

For “-101”

Comp 412, Fall 2010

Inherited Attributes

16

Back to the Example

For “-101”

Comp 412, Fall 2010

Synthesized attributes

Val draws from children & the same node.

17

Back to the Example

vaI: -5

More Synthesized attributes

For “-101”

Comp 412, Fall 2010 18

Back to the Example

val: -5

For “-101”

Comp 412, Fall 2010

If we show the computation ...

& then peel away the parse tree ..

19

Back to the Example

val: -5

val:

o

val:

/

1

/ pos:0
neg: true valk\q
/ pos: \gos 0
4

- //a
pos \pos: 11 /

val:.1 A>

val: 0

/

0

All that is left is the atfribute
dependence graph.

This succinctly represents the
flow of values in the problem
instance.

The dynamic methods sort this
graph to find independent values,
then work along graph edges.

The rule-based methods try to
discover "good"” orders by
analyzing the rules.

The oblivious methods ignore the
structure of this graph.

For “-101”

The dependence graph must be acyclic

Comp 412, Fall 2010

20

Circularity

We can only evaluate acyclic instances
* General circularity tfesting problem is inherently exponentiall

* We can prove that some grammars can only generate instances
with acyclic dependence graphs

— Largest such class is "strongly non-circular” grammars (SNC)
— SNC grammars can be tested in polynomial fime
— Failing the SNC test is not conclusive

Many evaluation methods discover circularity dynamically
= Bad property for a compiler to have

Comp 412, Fall 2010 SNC comes from Kennedy & Warren, POPL 1976 21

A Circular Attribute Grammar

Productions Attribution Rules
Number — List List.a <0
List, —» List; Bit Listja < Listpa+1

LiSto.b «— Li5t1.b
LfSt1.C «— Lf5t1.b + Bit.val

| Bit LIStob — LiSto.a + LiSto.C + Bit.val
Bit - 0 “Bitval < 0
| 1 Bit.val — 1

Remember, the circularity is in the attribution rules, not the underlying CFG

Comp 412, Fall 2010 22

Circular Grammar Example

%

/ Productions Attribution Rules
Number List |Lista< 0O

List, — List; Listia <« Listp.a+1
Bit Listo.b « List.b
List;.c « Li5t1.b +
Bit.val
I Bit Listo.b < Listp.a +
Listy.c + Bit.val
Bit.val <+ O

Bit —
| Bit.val < 1

~ O

For “-101”

Comp 412, Fall 2010 23

Circular Grammar Example

e

I

Productions

Attribution Rules

For “-101”

Comp 412, Fall 2010

Number — List Lista< O
List, — List;| Listia <« Listp.a+1
Bit Listy.b « List.b
List;.c < List.b +
Bit.val
| Bit Listg.b < Listg.a +
Listy.c + Bit.val
Bit - 0 Bit.val < O
| 1 Bit.val « 1
24

Circular Grammar Example

/ Productions Attribution Rules
Number — List Lista< O

' List, — List; Listia <« Listp.a+1

Bit | Listy.b « List;.b

List;.c « Li5t1.b +
Bit.val

I Bit LIStob « Listp.a +
Listy.c + Bit.val

Bit.val < O
Bit.val < 1

Bit —
|

~ O

For “-101”

Comp 412, Fall 2010 25

Circular Grammar Example

%

/ Productions Attribution Rules
Number List Lista<« O
' List, — List; Listia <« Listp.a+1
Bit Listy.b « List;.b

List;.c « Li5t1.b +
Bit.val

I Bit LIStob « Listp.a +
Listy.c + Bit.val

Bit.val < O

Bit —
| Bit.val « 1

~ O

For “-101”

Comp 412, Fall 2010 26

Circular Grammar Example

Attribution Rules

%

/ Productions
Number List

Lista< O

List, — List; List;ja <« Listp.a+ 1
Bit Listo.b « List.b
List;.c « Li5t1.b +
Bit.val
I Bit LIStob « Listp.a +
LiSto.C + Bit.val
Bit - 0 Bit.val < O
| 1 Bit.val « 1
!
1 \For “-101”
\‘ Here is the circularity ..
Comp 412, Fall 2010 27

Circular Grammar Example

Productions

Attribution Rules

Number — List
LiS'to — List,

Bit Listob < List.b
:Li5t1.C <« Li5t1.b +

| Bi't(

Lista< O

List;.a < LiSto.Cl +1

Bit.val

LiSto.b « Listp.a +
LiSto.C + Bit.val

Bit - 0
| 1

Bit.val < O
Bit.val < 1

For “-101”

Comp 412, Fall 2010

Here is the circularity ...

28

Circularity — The Point

* Circular grammars have indeterminate values
— Algorithmic evaluators will fail

* Noncircular grammars evaluate to a unique set of values

* Circular grammar might give rise to noncircular instance
— Probably shouldn't bet the compiler on it ...

= Should (undoubtedly) use provably noncircular grammars

Remember,we are studying AGs to gain insight
* We should avoid circular, indeterminate computations

* TIf we stick to provably noncircular schemes, evaluation
should be easier

Comp 412, Fall 2010 29

An Extended Attribute Grammar Example

Grammar for a basic block

—

Block,

Assighg
Expro

Termp

O 0 N O Ol A W N

—
o

Factor

—
N =

Comp 412, Fall 2010

_)

— =y ==l

%
I
|

Block; Assign
Assign

Ident = Expr ;
Expr; + Term
Expr; - Term
Term

Term; * Factor
Term; / Factor
Factor

(Expr)
Number

Ident

($4.33)

Let's estimate cycle counts

* Each operation has a COST
* Add them, bottom up

* Assume a load per value

* Assume ho reuse

Simple problem for an AG

Hey, that is a practical
application!

30

An Extended Example

1 B/OCkO -

2 |
3 Assigng —

4 Expro -

7 Termg —>

9 I
10 Factor —
11 |

|

12
Comp 412, Fall 2010

Block; Assign

Assign
Ident = Expr ;

Expr; + Term
Expr; - Term

Term
Term; * Factor

Term; / Factor

Factor
(Expr)
Number
Ident

(continued)

Blocky.cost < Block;.cost +
Assign.cost

Blocky.cost « Assign.cost

Assign.cost < COST(store) +
Expr.cost

Expro.cost <« Expricost +
COST(add) + Term.cost

Expro.cost « Expri.cost +
COST(sub) + Term.cost

Expro.cost < Term.cost

Termgp.cost < Term;.cost +
COST(mult) + Factor.cost

Termp.cost < Term;.cost +
COST(div) + Factor.cost

Termy.cost < Factor.cost
Factor.cost < Expr.cost
Factor.cost < COST(loadI)
Factor.cost <— COST(load)

These are all
synthesized
attributes |

Values flow
from rhs to
lhs in prod'ns

31

An Extended Example (continued)

Properties of the example grammar
* All attributes are synthesized = S-attributed grammar
* Rules can be evaluated bottom-up in a single pass

— Good fit to bottom-up, shift/reduce parser
* Easily understood solution

* Seems to fit the problem well

What about an improvement?
* Values are loaded only once per block (not at each use)
* Need to track which values have been already loaded

Comp 412, Fall 2010 32

A Better Execution Model

Adding load tracking
* Needsets Before and After for each production
* Must be initialized, updated, and passed around the tree

10 Factor — (Expr) Factor.cost < Expr.cost
Expr.before < Factor.before
Factor.after < Expr.after

11 | Number Factor.cost « COST(loadI)
Factor.after < Factor.before
12 | Ident If (Ident.name ¢ Factor.before)
then

Factor.cost <— COST(load)
Factor.after < Factor.before
u { Ident.name }
else
Factor.cost < O
Factor.after < Factor.before

This version is much more complex
Comp 412, Fall 2010 33

A Better Execution Model

* Load tracking adds complexity
* But, most of it is in the "copy rules”
* Every production needs rules to copy Before & After

A sample production

4 Expro — Expr;+ Term Expro.cost <« Expricost +
COST(add) + Term.cost
[Expri.before « Expry.before

Term.before < Expri.before
Expro.after < Term.after

These copy rules multiply rapidly
Each creates an instance of the set
Lots of work, lots of space, lots of rules to write

Comp 412, Fall 2010 34

An Even Better Model

What about accounting for finite register sets?
* Before & After must be of limited size

* Adds complexity to Factor—Identifier

* Requires more complex initialization

Jump from tracking loads to tracking registers is small
* Copy rules are already in place
* Some local code to perform the allocation

Comp 412, Fall 2010

35

And Its Extensions

Tracking loads
e Introduced Before and After sets to record loads

* Added 22 copy rules per production
— Serialized evaluation into execution order

* Made the whole attribute grammar large & cumbersome

Finite register set

* Complicated one production (Factor — Identifier)
* Neededa little fancier initialization

* Changes were quite limited

Why is one change hard and the other easy?

Comp 412, Fall 2010 36

The Moral of the Story

* Non-local computation needed lots of supporting rules
* Complex local computation was relatively easy

A good rule of thumb is

that the compiler touches
The PPOblemS. o all the space it allocates,
* Copy rules increase cognitive overhead

usually multiple times
* Copy rules increase space requirements
— Need copies of attributes
— Can use pointers, for even more cognitive overhead
* Resultis anattributed tree (somewhat subtle points)
— Must build the parse tree
— Either search tree for answers or copy them to the root

Comp 412, Fall 2010 37

