
Code Shape, Part II
Addressing Arrays, Aggregates, & Strings

Comp 412

Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved.

Students enrolled in Comp 412 at Rice University have explicit permission to make copies
of these materials for their personal use.

Faculty from other educational institutions may use these materials for nonprofit
educational purposes, provided this copyright notice is preserved.

COMP 412
FALL 2010

Last Lecture

Code Generation for Expressions

• Simple treewalk produces reasonable code

— Execute most demanding subtree first

— Generate function calls inline

— Can implement treewalk explicitly, with an AG or ad hoc SDT …

• Handle assignment as an operator

— Insert conversions according to language-specific rules

— If compile-time checking is impossible, check tags at runtime

— Talked about reference counting as alternative to GC

Today

• Addressing arrays and aggregates

• Next Time: Booleans & Relationals

Comp 412, Fall 2010 2

Comp 412, Fall 2010 3

How does the compiler handle A[i,j] ?

First, must agree on a storage scheme

Row-major order (most languages)

Lay out as a sequence of consecutive rows

Rightmost subscript varies fastest

A[1,1], A[1,2], A[1,3], A[2,1], A[2,2], A[2,3]

Column-major order (Fortran)

Lay out as a sequence of columns

Leftmost subscript varies fastest

A[1,1], A[2,1], A[1,2], A[2,2], A[1,3], A[2,3]

Indirection vectors (Java)

Vector of pointers to pointers to … to values

Takes much more space, trades indirection for arithmetic

Not amenable to analysis

Comp 412, Fall 2010 4

Laying Out Arrays

The Concept

Row-major order

Column-major order

Indirection vectors

1,1 1,2 1,3 1,4 2,1 2,2 2,3 2,4A

1,1 2,1 1,2 2,2 1,3 2,3 1,4 2,4A

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4
A

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4
A

These can have
distinct & different
cache behavior

Comp 412, Fall 2010 5

Computing an Array Address

A[i]

• @A + (i – low) x sizeof(A[1])

• In general: base(A) + (i – low) x sizeof(A[1])

Almost always a power

of 2, known at compile-time

 use a shift for speed

Color Code:
Invariant
Varying

Depending on how A is declared, @A may be

• an offset from the ARP,

• an offset from some global label, or

• an arbitrary address.

The first two are compile time constants.

Comp 412, Fall 2010 6

Computing an Array Address

A[i]

• @A + (i – low) x sizeof(A[1])

• In general: base(A) + (i – low) x sizeof(A[1])

Almost always a power of
2, known at compile-time
 use a shift for speed

int A[1:10]  low is 1
Make low 0 for faster
access (saves a –)

Comp 412, Fall 2010 7

Computing an Array Address

A[i]

• @A + (i – low) x sizeof(A[1])

• In general: base(A) + (i – low) x sizeof(A[1])

What about A[i1,i2] ?

Row-major order, two dimensions

@A + ((i1 – low1) x (high2 – low2 + 1) + i2 – low2) x sizeof(A[1])

Column-major order, two dimensions

@A + ((i2 – low2) x (high1 – low1 + 1) + i1 – low1) x sizeof(A[1])

Indirection vectors, two dimensions

*(A[i1])[i2] — where A[i1] is, itself, a 1-d array reference

This stuff looks expensive!
Lots of implicit +, -, x ops

e.g., @A + (i1 – low) x sizeof(A[1])

Comp 412, Fall 2010 8

Optimizing Address Calculation for A[i,j]

In row-major order

@A + (i–low1) x (high2–low2+1) x w + (j – low2) x w

Which can be factored into

@A + i x (high2–low2+1) x w + j x w

– (low1 x (high2–low2+1) x w) - (low2 x w)

If lowi, highi, and w are known, the last term is a constant

Define @A0 as

@A – (low1 x (high2–low2+1) x w - low2 x w

And len2 as (high2-low2+1)

Then, the address expression becomes

@A0 + (i x len2 + j) x w

Compile-time constants

where w = sizeof(A[1,1])

If @A is known, @A0

is a known constant.

Comp 412, Fall 2010 9

Array References

What about arrays as actual parameters?

Whole arrays, as call-by-reference parameters

• Need dimension information → build a dope vector

• Store the values in the calling sequence

• Pass the address of the dope vector in the parameter slot

• Generate complete address polynomial at each reference

Some improvement is possible

• Save leni and lowi rather than lowi and highi

• Pre-compute the fixed terms in prologue sequence

What about call-by-value?

• Most c-b-v languages pass arrays by reference

• This is a language design issue

@A

low1

high1

low2

high2

Comp 412, Fall 2010 10

Array References

What about A[12] as an actual parameter?

If corresponding parameter is a scalar, it’s easy

• Pass the address or value, as needed

• Must know about both formal & actual parameter

• Language definition must force this interpretation

What is corresponding parameter is an array?

• Must know about both formal & actual parameter

• Meaning must be well-defined and understood

• Cross-procedural checking of conformability

⇒ Again, we’re treading on language design issues

Comp 412, Fall 2010 11

Array References

What about variable-sized arrays?

Local arrays dimensioned by actual parameters

• Same set of problems as parameter arrays

• Requires dope vectors (or equivalent)

— dope vector at fixed offset in activation record

→ Different access costs for textually similar references

This presents a lot of opportunity for a good optimizer

• Common subexpressions in the address polynomial

• Contents of dope vector are fixed during each activation

• Should be able to recover much of the lost ground

⇒ Handle them like parameter arrays

Array Address Calculations

Array address calculations are a major source of overhead

• Scientific applications make extensive use of arrays and
array-like structures
— Computational linear algebra, both dense & sparse

• Non-scientific applications use arrays, too
— Representations of other data structures

→ Hash tables, adjacency matrices, tables, structures, …

Array calculations tend iterate over arrays

• Loops execute more often than code outside loops

• Array address calculations inside loops make a huge
difference in efficiency of many compiled applications

Reducing array address overhead has been a major focus of
optimization since the 1950s.

Comp 412, Fall 2010 12

Comp 412, Fall 2010 13

Example: Array Address Calculations in a Loop

DO J = 1, N

A[I,J] = A[I,J] + B[I,J]

END DO

Naïve: Perform the address calculation twice

DO J = 1, N

R1 = @A0 + (J x len1 + I) x sizeof(A[1,1])

R2 = @B0 + (J x len1 + I) x sizeof(A[1,1])

MEM(R1) = MEM(R1) + MEM(R2)

END DO

A, B are declared as conformable
floating-point arrays

Code generated by a
translator will almost
certainly work this way.
(treewalk code generator)

Imagine a 5 point stencil:

A[I,J] = 0.2 * (A[I-1,J] + A[I,J] + A[I+1,J]
+ A[I,J-1] + A[I,J+1])

Inefficiency is an artifact
of local translation

Comp 412, Fall 2010 14

Example: Array Address Calculations in a Loop

DO J = 1, N

A[I,J] = A[I,J] + B[I,J]

END DO

More sophisticated: Move common calculations out of loop

R1 = I x sizeof(A[1,1])

c = len1 x sizeof(A[1,1]) ! Compile-time constant

R2 = @A0 + R1

R3 = @B0 + R1

DO J = 1, N

a = J x c

R4 = R2 + a

R5 = R3 + a

MEM(R4) = MEM(R4) + MEM(R5)

END DO

Loop-invariant code motion

Comp 412, Fall 2010 15

Example: Array Address Calculations in a Loop

DO J = 1, N

A[I,J] = A[I,J] + B[I,J]

END DO

Very sophisticated: Convert multiply to add

R1 = I x sizeof(A[1,1])

c = len1 x sizeof(A[1,1]) ! Compile-time constant

R2 = @A0 + R1 ; R3 = @B0 + R1

DO J = 1, N

R2 = R2 + c

R3 = R3 + c

MEM(R2) = MEM(R2) + MEM(R3)

END DO

Operator Strength Reduction (§ 10.4.2 in
EaC)

J is now bookkeeping

A good compiler
would rewrite the
end-of-loop test to
operate on R2 or R3

(Linear function test
replacement)

Structures and Records

Structures and records have two complications

Each declared structure has a set of fields

• Size and offset

• Compute base + offset for field

• Use size to choose load width and register width

Structures and records can have dimensions

• Arrays of structures

• Fields that are arrays or arrays of structures

• Use array address calculation techniques, as needed

Structures and records require compile-time support in the
form of a table that maps field names to <offset,size > tuples.

Comp 412, Fall 2010 16

Comp 412, Fall 2010 17

Representing and Manipulating Strings

Character strings differ from scalars, arrays, & structures

• Fundamental unit is a character

— Typical sizes are one or two bytes

— Target ISA may (or may not) support character-size operations

• Set of supported operations on strings is limited

— Assignment, length, concatenation, translation (?)

• Efficient string operations are complex on most RISC ISAs

— Ties into representation, linkage convention, & source language

§ 7.6 in
EaC

Subword data

Comp 412, Fall 2010 18

Representing and Manipulating Strings

Two common representations

• Explicit length field

• Null termination

• Language design issue
— Fixed-length versus varying-length strings (1 or 2 length fields)

a s t r i n g \0b

@b

Length field may
take more space
than terminator

String representation is a great case study in the way
that one design decision (C, Unix) can have a long term
impact on computing (security, buffer overflow)

@b

s t r i n gb8 a

Comp 412, Fall 2010 19

Representing and Manipulating Strings

Each representation as advantages and disadvantages

Unfortunately, null termination is almost considered normal

• Hangover from design of C

• Embedded in OS and API designs

Operation Explicit Length Null Termination

Assignment Straightforward Straightforward

Checked Assignment Checking is easy Must count length1

Length O(1) O(n)

Concatenation Must copy data Length + copy data

1 Checked assignment requires both a current length
for the string and an allocated length for the buffer.

Comp 412, Fall 2010 20

Manipulating Strings

Single character assignment

• With character operations

— Compute address of rhs, load character

— Compute address of lhs, store character

• With only word operations (>1 char per word)

— Compute address of word containing rhs & load it

— Move character to destination position within word

— Compute address of word containing lhs & load it

— Mask out current character & mask in new character

— Store lhs word back into place

Comp 412, Fall 2010 21

Manipulating Strings

Multiple character assignment

Two strategies
1. Wrap a loop around the single character code, or

2. Work up to a word-aligned case, repeat whole word moves, and
handle any partial-word end case

With character operations
1. Easy to generate; inefficient use of resources

2. Harder to generate; better use of resources

With only word operations
1. Lots of complication to generate; inefficient at runtime, too

2. Fold complications into end case; reasonable efficiency

Requires explicit
code to check for
buffer overflow
(⇒ length)

Source & destination aligned differently
⇒ much harder cases for word operations

Manipulating Strings

Concatenation

• String concatenation is a length computation followed by a
pair of whole-string assignments

— Touches every character

• Exposes representation issues

— Is string a descriptor that points to text?

— Is string a buffer that holds the text?

— Consider a b || c

→Compute b || c and assign descriptor to a?

→Compute b || c into a temporary & copy it into a?

→Compute b || c directly into a?

• What about a call to fee(b || c) ?

Comp 412, Fall 2010 22

Comp 412, Fall 2010 23

Manipulating Strings

Length Computation

• Representation determines cost

— Explicit length turns length(b) into a memory reference

— Null termination turns length(b) into a loop of memory
references and arithmetic operations

• Length computation arises in other contexts

— Whole-string or substring assignment

— Checked assignment (buffer overflow)

— Concatenation

— Evaluating call-by-value actual parameter or concatenation as an
actual parameter

And we didn’t consider a list of characters, …

