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Last Lecture

Code Generation for Expressions

• Simple treewalk produces reasonable code

— Execute most demanding subtree first

— Generate function calls inline

— Can implement treewalk explicitly, with an AG or ad hoc SDT …

• Handle assignment as an operator

— Insert conversions according to language-specific rules

— If compile-time checking is impossible, check tags at runtime

— Talked about reference counting as alternative to GC

Today

• Addressing arrays and aggregates

• Next Time: Booleans & Relationals
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How does the compiler handle A[i,j] ?

First, must agree on a storage scheme

Row-major order                                                  (most languages)

Lay out as a sequence of consecutive rows

Rightmost subscript varies fastest

A[1,1], A[1,2], A[1,3], A[2,1], A[2,2], A[2,3]

Column-major order                                                       (Fortran)

Lay out as a sequence of columns

Leftmost subscript varies fastest

A[1,1], A[2,1], A[1,2], A[2,2], A[1,3], A[2,3]

Indirection vectors                                                            (Java)

Vector of pointers to pointers to … to values

Takes much more space, trades indirection for arithmetic

Not amenable to analysis
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Laying Out Arrays

The Concept

Row-major order

Column-major order

Indirection vectors

1,1 1,2 1,3 1,4 2,1 2,2 2,3 2,4A

1,1 2,1 1,2 2,2 1,3 2,3 1,4 2,4A

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4
A

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4
A

These can have 
distinct & different 
cache behavior
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Computing an Array Address

A[ i ]

• @A + ( i – low ) x sizeof(A[1])

• In general: base(A) + ( i – low ) x sizeof(A[1])

Almost always a power 

of 2, known at compile-time 

 use a shift for speed

Color Code:
Invariant
Varying

Depending on how A is declared, @A may be 

• an offset from the ARP, 

• an offset from some global label, or 

• an arbitrary address.

The first two are compile time constants.
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Computing an Array Address

A[ i ]

• @A + ( i – low ) x sizeof(A[1])

• In general: base(A) + ( i – low ) x sizeof(A[1])

Almost always a power of 
2, known at compile-time 
 use a shift for speed

int A[1:10]  low is 1
Make low 0 for faster 
access      (saves a – )
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Computing an Array Address

A[ i ]

• @A + ( i – low ) x sizeof(A[1]) 

• In general: base(A) + ( i – low ) x sizeof(A[1])

What about A[i1,i2] ?

Row-major order, two dimensions

@A + (( i1 – low1 ) x (high2 – low2 + 1) + i2 – low2) x sizeof(A[1])

Column-major order, two dimensions

@A + (( i2 – low2 ) x (high1 – low1 + 1) + i1 – low1) x sizeof(A[1])

Indirection vectors, two dimensions

*(A[i1 ])[i2] — where  A[i1] is, itself, a 1-d array reference

This stuff  looks expensive!
Lots of implicit +, -, x ops

e.g., @A + ( i1 – low ) x sizeof(A[1])
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Optimizing Address Calculation for A[i,j]

In row-major order

@A + (i–low1) x (high2–low2+1) x w + (j – low2) x w

Which can be factored into

@A + i x (high2–low2+1) x w + j x w

– (low1 x (high2–low2+1) x w) - (low2 x w)

If  lowi, highi, and w are known, the last term is a constant

Define @A0 as 

@A – (low1 x (high2–low2+1) x w - low2 x w

And len2 as (high2-low2+1)

Then, the address expression becomes 

@A0 + (i x len2 + j ) x w

Compile-time constants

where w = sizeof(A[1,1])

If @A is known, @A0

is a known constant.
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Array References

What about arrays as actual parameters?

Whole arrays, as call-by-reference parameters

• Need dimension information → build a dope vector

• Store the values in the calling sequence

• Pass the address of the dope vector in the parameter slot

• Generate complete address polynomial at each reference

Some improvement is possible

• Save leni and lowi rather than lowi and highi

• Pre-compute the fixed terms in prologue sequence

What about call-by-value?

• Most c-b-v languages pass arrays by reference

• This is a language design issue

@A

low1

high1

low2

high2
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Array References

What about A[12] as an actual parameter?

If corresponding parameter is a scalar, it’s easy

• Pass the address or value, as needed

• Must know about both formal & actual parameter

• Language definition must force this interpretation

What is corresponding parameter is an array?

• Must know about both formal & actual parameter

• Meaning must be well-defined and understood

• Cross-procedural checking of conformability

⇒ Again, we’re treading on language design issues
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Array References

What about variable-sized arrays?

Local arrays dimensioned by actual parameters

• Same set of problems as parameter arrays

• Requires dope vectors (or equivalent)

— dope vector at fixed offset in activation record

→ Different access costs for textually similar references

This presents a lot of opportunity for a good optimizer

• Common subexpressions in the address polynomial

• Contents of dope vector are fixed during each activation

• Should be able to recover much of the lost ground

⇒ Handle them like parameter arrays



Array Address Calculations

Array address calculations are a major source of overhead

• Scientific applications make extensive use of arrays and 
array-like structures
— Computational linear algebra, both dense & sparse

• Non-scientific applications use arrays, too
— Representations of other data structures

→ Hash tables, adjacency matrices, tables, structures, …

Array calculations tend iterate over arrays

• Loops execute more often than code outside loops

• Array address calculations inside loops make a huge 
difference in efficiency of many compiled applications

Reducing array address overhead has been a major focus of 
optimization since the 1950s.
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Example: Array Address Calculations in a Loop

DO J = 1, N

A[I,J] = A[I,J] + B[I,J]

END DO

Naïve: Perform the address calculation twice

DO J = 1, N

R1 = @A0 + (J x len1 + I ) x sizeof(A[1,1])

R2 = @B0 + (J x len1 + I ) x sizeof(A[1,1])

MEM(R1) = MEM(R1) + MEM(R2)

END DO

A, B are declared as conformable 
floating-point arrays

Code generated by a 
translator will almost 
certainly work this way.  
(treewalk code generator) 

Imagine a 5 point stencil:

A[I,J] =  0.2 * (A[I-1,J] + A[I,J] + A[I+1,J]
+ A[I,J-1] + A[I,J+1] )

Inefficiency is an artifact 
of local translation



Comp 412, Fall 2010 14

Example: Array Address Calculations in a Loop

DO J = 1, N

A[I,J] = A[I,J] + B[I,J]

END DO

More sophisticated: Move common calculations out of loop

R1 = I x sizeof(A[1,1])

c = len1 x sizeof(A[1,1])     ! Compile-time constant

R2 = @A0 + R1

R3 = @B0 + R1

DO J = 1, N

a = J x c

R4 = R2 + a

R5 = R3 + a

MEM(R4) = MEM(R4) + MEM(R5)

END DO

Loop-invariant code motion
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Example: Array Address Calculations in a Loop

DO J = 1, N

A[I,J] = A[I,J] + B[I,J]

END DO

Very sophisticated: Convert multiply to add 

R1 = I x sizeof(A[1,1])

c = len1 x sizeof(A[1,1])     ! Compile-time constant

R2 = @A0 + R1 ;  R3 = @B0 + R1

DO J = 1, N

R2 = R2 + c

R3 = R3 + c

MEM(R2) = MEM(R2) + MEM(R3)

END DO

Operator Strength Reduction (§ 10.4.2 in 
EaC)

J is now bookkeeping

A good compiler 
would rewrite the 
end-of-loop test to 
operate on R2 or R3

(Linear function test 
replacement)



Structures and Records

Structures and records have two complications

Each declared structure has a set of fields

• Size and offset

• Compute base + offset for field

• Use size to choose load width and register width

Structures and records can have dimensions

• Arrays of structures

• Fields that are arrays or arrays of structures

• Use array address calculation techniques, as needed

Structures and records require compile-time support in the 
form of a table that maps field names to <offset,size > tuples.

Comp 412, Fall 2010 16



Comp 412, Fall 2010 17

Representing and Manipulating Strings

Character strings differ from scalars, arrays, & structures

• Fundamental unit is a character

— Typical sizes are one or two bytes

— Target ISA may (or may not) support character-size operations

• Set of supported operations on strings is limited

— Assignment, length, concatenation, translation (?)

• Efficient string operations are complex on most RISC ISAs

— Ties into representation, linkage convention, & source language

§ 7.6 in 
EaC

Subword data
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Representing and Manipulating Strings

Two common representations

• Explicit length field

• Null termination

• Language design issue
— Fixed-length versus varying-length strings    (1 or 2 length fields)

a s t r i n g \0b

@b

Length field may 
take more space 
than terminator

String representation is a great case study in the way 
that one design decision (C, Unix) can have a long term 
impact on computing (security, buffer overflow)

@b

s t r i n gb8 a
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Representing and Manipulating Strings

Each representation as advantages and disadvantages

Unfortunately, null termination is almost considered normal

• Hangover from design of C

• Embedded in OS and API designs

Operation Explicit Length Null Termination

Assignment Straightforward Straightforward

Checked Assignment Checking is easy Must count length1

Length O(1) O(n)

Concatenation Must copy data Length + copy data

1 Checked assignment requires both a current length 
for the string and an allocated length for the buffer.
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Manipulating Strings

Single character assignment

• With character operations

— Compute address of rhs, load character

— Compute address of lhs, store character

• With only word operations   (>1 char per word)

— Compute address of word containing rhs & load it

— Move character to destination position within word

— Compute address of word containing lhs & load it

— Mask out current character & mask in new character

— Store lhs word back into place
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Manipulating Strings

Multiple character assignment

Two strategies 
1. Wrap a loop around the single character code, or

2. Work up to a word-aligned case, repeat whole word moves, and 
handle any partial-word end case

With character operations
1. Easy to generate; inefficient use of resources 

2. Harder to generate; better use of resources

With only word operations
1. Lots of complication to generate; inefficient at runtime, too

2. Fold complications into end case; reasonable efficiency 

Requires explicit 
code to check for 
buffer overflow
(⇒ length)

Source & destination aligned differently
⇒ much harder cases for word operations



Manipulating Strings

Concatenation

• String concatenation is a length computation followed by a 
pair of whole-string assignments

— Touches every character

• Exposes representation issues

— Is string a descriptor that points to text?

— Is string a buffer that holds the text?

— Consider a b || c

→Compute b || c and assign descriptor to a?

→Compute b || c into a temporary & copy it into a?

→Compute b || c directly into a?

• What about a call to fee( b || c ) ?
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Manipulating Strings

Length Computation

• Representation determines cost

— Explicit length turns length(b) into a memory reference

— Null termination turns length(b) into a loop of memory 
references and arithmetic operations

• Length computation arises in other contexts

— Whole-string or substring assignment

— Checked assignment (buffer overflow)

— Concatenation

— Evaluating call-by-value actual parameter or concatenation as an 
actual parameter

And we didn’t consider a list of characters, …


