RICE COMP 412
FALL 2010
Boolean & Relational Values
Control-flow Constructs

Comp 412

Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved.

Students enrolled in Comp 412 at Rice University have explicit permission to make copies
of these materials for their personal use.

Faculty from other educational institutions may use these materials for nonprofit
educational purposes, provided this copyright notice is preserved.

Boolean & Relational Values

How should the compiler represent them?

* Answer depends on the target machine
Implementation of booleans, relational

, expressions & control flow constructs
Two classic approaches varies widely with the ISA

* Numerical (explicit) representation
* Positional (implicit) representation
Best choice depends on both context and ISA

This material is drawn from §7.4 inEaC, where it is presented in more
depth with more examples. You should read that section, along with
the rest of Chapter 7. Lecture will not cover all the material in
Chapter 7, but you are responsible for it.

Comp 412, Fall 2010 2

Boolean & Relational Expressions

First, we need to recognize boolean & relational expressions

Expr —
|

AndTerm —

|
RelExpr —

Comp 412, Fall 2010

Expr v AndTerm
AndTerm

AndTerm A RelExpr
RelExpr

RelExpr < NumExpr
RelExpr < NumExpr
RelExpr = NumExpr
RelExpr ¢ NumExpr
RelExpr > NumExpr
RelExpr > NumExpr

NumExpr —

|
Term —

|

|
Value —>
Factor

NumExpr + Term
NumExpr - Term
Term

Term * Value
Term = Value
Value

- Factor

Factor

(Expr)
number

Reference

Reference derives a hame, a subscripted name,
a structure reference, a string reference, ...

Boolean & Relational Values

Next, we need to represent the values

Numerical representation
* Assign values to TRUE and FALSE

* Use hardware AND, OR, and NOT operations
* Use comparison to get a boolean from a relational expression

Examples
X<y becomes cmp_LT r,r, =1
if (x<y) CMP_LT 1 fy, =0
then stmt; becomes
cbr r — _stmt,, stmt,
else stmt,

Comp 412, Fall 2010 4

Boolean & Relational Values

What if the ISA uses a condition code?
* Must use a conditional branch to interpret result of compare
* Necessitates branches in the evaluation

Example
X<y becomes cmp Moly = CCq
cbr LT CCq — L, Le
L: loadl 1 = ry
br — L
Le: loadl 0 = ry
Le: ... Other statements ...

This "positional representation” is much more complex

Comp 412, Fall 2010 5

Boolean & Relational Values Editorial comment: (KDC)

What if the ISA uses a condition code?| €S are an evil, seductive idea

* Must use a conditional branch to interpret result of compare
* Necessitates branches in the evaluation

Example
X<y becomes cmp Moly = CCq
cbr LT CC, — Lyle
L: loadl 1 = ry
br —_— LE
L. loadl 0 : o
F Condition codes
Le: ... other statem « gre an architect's hack

: . o * allow ISA to avoid some
This "positional representation” is much ma comparisons

* complicates code for
Comp 412, Fall 2010 simple cases

Boolean & Relational Values

The last example actually encoded result in the PC

If result is used to control an operation, that may suffice

Condition code version does not directly produce (x < y)

Boolean version does

Still, there is no significant difference in the code produced

Example

if (x<vy)
thena « c +d
else a«e+f

Comp 412, Fall 2010

Straight Condition Codes Boolean Comparisons
comp oty = CCy CMP_LT 1oy, =1
cbr LT ¢CcC; —LL, cbr — Ly,

L,: add fe,fg =T, L,: add re,fg =TIy
br — Lout br — Lout
L,: add e,y =T, L,: add e,y =TI,
br — Lout br — Lout
Lour: nop Lour: nop

Boolean & Relational Values

Other Architectural Variations

Conditional move & predication both simplify this code

Example Conditional Move Predicated Execution

if (x <) COmp Tyl = CC, CMp_LT rofy =1
thena < c+d add .l =rn (np) add ol = I
else a«e+f

add Fe I =1, (-r;) add Feo,l =,

12 LT CCy,r,r, =14

Both versions avoid the branches
Both are shorter than cond'n codes or Boolean-valued compare
Are they better?

Comp 412, Fall 2010 8

Boolean & Relational Values

Consider the assignment x<«a<bac<d

Straight Condition Codes Boolean Compare
comp rofp, = CCy cmp LT r,f, =0
cor LT CCi —1L,,L, CMP LT r,fy =1

L,: comp re,fg4 = CC, and r,fo =Ty

CbI’_LT CCZ —> L3,L2

L,: loadl 0 = Iy
br — Lout
Ls: loadl 1 = Iy
br — Lour
Lour: nop

Here, Boolean compare produces much better code
Comp 412, Fall 2010 9

Boolean & Relational Values
Conditional move & predication help here, too

Conditional Move Predicated Execution
comp ralb = CC; | Ccmp LT ralp =1
|2|_LT CCl,I‘T,rF = I‘l Cmp_I—T r(;1rd = r2

X<—a<banc<d
comp lelg = CC, | and r,fo =10y

i2i_LT CCZ, e =1

and r,0o = Iy

Conditional move is worse than Boolean compare
Predication is identical to Boolean compares

The bottom line:
— Context & hardware determine the appropriate choice

Comp 412, Fall 2010 Chapter 7 goes info greater depth; readit. |10

Control Flow

If-then-else

* Follow model for evaluating relationals & booleans with
branches

Branching versus predication (e.g., IA-64)
* Frequency of execution
— Uneven distribution = do what it takes to speed common case
* Amount of code in each case
— Unequal amounts means predication may waste issue slots
* Control flow inside the construct

— Any branching activity within the construct complicates the
predicates and makes branches attractive

Comp 412, Fall 2010 11

Short-circuit Evaluation

Optimize boolean expression evaluation

* Once value is determined, skip rest of the evaluation
if (xoryand z) then ...

— If x is true, need not evaluate y or z
— Branch directly to the "then" clause

— On a PDP-11 or a VAX, short circuiting saved time

* Modern architectures may favor evaluating full expression
— Rising branch latencies make the short-circuit path expensive
— Conditional move and predication may make full path cheaper

* Past: compilers analyzed code to insert short circuits

* Future: compilers analyze code to prove legality of full path
evaluation where language specifies short circuits

Comp 412, Fall 2010 12

Control Flow

Loops
* Evaluate condition before loop (if needed) |
* Evaluate condition after loop
. Pre-test
* Branch back to the top (if needed)
Merges test with last block of loop body _ y
Loop body
Pos‘rv-’res’r
-
while, for, do, & until all fit this basic model Next blocki
y

Comp 412, Fall 2010 13

Implementing Loops

for (i=1; i< 100; i++) { loop body }
next statement

loadl 1 =0 I
loadl 1 =T, > Initialization
load| 100 =3 _
cmp GE s =1y,)
chr ', L > Pre-test
L.: loop body -
add r,ao =n)
Cmp_LT r,r3 =1s > Post-test
cbr I's — Lq,L5

Lo: next statement

Comp 412, Fall 2010 14

Break statements

Many modern programming languages include a break
* Exits from the innermost control-flow statement

— Out of the innermost loop
— Out of a case statement

Translates into a jump

* Targets statement outside control-
flow construct

* Creates multiple-exit construct
* Skip in loop goes to next iteration

Only make sense if loop has > 1 block

Comp 412, Fall 2010

Break
inB1

Pre-test

A 4

Loop head

{

N

>Skq3|n

Post-test

Next block

A

|

15

Control Flow

Case Statements

1 Evaluate the controlling expression

2 Branch to the selected case

3 Execute the code for that case

4 Branch to the statement after the case

Parts 1, 3, & 4 are well understood, part 2 is the key

Comp 412, Fall 2010 16

Control Flow

Case Statements

1 Evaluate the controlling expression

2 Branch to the selected case

3 Execute the code for that case

4 Branch to the statement after the case (use break)
Parts 1, 3, & 4 are well understood, part 2 is the key

Strategies

* Linear search (nested if-then-else constructs)

* Build a table of case expressions & binary search it

* Directly compute an address (requires dense case set)

Case statements are a place where attention

Comp 412, Fall 2010 to code shape pays off handsomely.

17

