
Boolean & Relational Values
Control-flow Constructs

Comp 412

Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved.

Students enrolled in Comp 412 at Rice University have explicit permission to make copies
of these materials for their personal use.

Faculty from other educational institutions may use these materials for nonprofit
educational purposes, provided this copyright notice is preserved.

COMP 412
FALL 2010

Comp 412, Fall 2010 2

Boolean & Relational Values

How should the compiler represent them?

• Answer depends on the target machine

Two classic approaches

• Numerical (explicit) representation

• Positional (implicit) representation

Best choice depends on both context and ISA

This material is drawn from §7.4 in EaC, where it is presented in more
depth with more examples. You should read that section, along with
the rest of Chapter 7. Lecture will not cover all the material in
Chapter 7, but you are responsible for it.

Implementation of booleans, relational
expressions & control flow constructs
varies widely with the ISA

Boolean & Relational Expressions

First, we need to recognize boolean & relational expressions

Comp 412, Fall 2010 3

Expr → Expr ∨ AndTerm

| AndTerm

AndTerm → AndTerm ∧ RelExpr

| RelExpr

RelExpr → RelExpr < NumExpr

| RelExpr ≤ NumExpr

| RelExpr = NumExpr

| RelExpr ≠ NumExpr

| RelExpr ≥ NumExpr

| RelExpr > NumExpr

NumExpr → NumExpr + Term

| NumExpr - Term

| Term

Term → Term ×Value

| Term ÷Value

| Value

Value → ¬ Factor

| Factor

Factor | (Expr)

| number

| Reference

Reference derives a name, a subscripted name,
a structure reference, a string reference, …

Comp 412, Fall 2010 4

Boolean & Relational Values

Next, we need to represent the values

Numerical representation

• Assign values to TRUE and FALSE

• Use hardware AND, OR, and NOT operations

• Use comparison to get a boolean from a relational expression

Examples

x < y becomes cmp_LT rx,ry  r1

if (x < y)

then stmt1

else stmt2

becomes
cmp_LT

cbr

rx,ry

r1

 r1

→ _stmt1,_stmt2

Comp 412, Fall 2010 5

Boolean & Relational Values

What if the ISA uses a condition code?

• Must use a conditional branch to interpret result of compare

• Necessitates branches in the evaluation

Example

This “positional representation” is much more complex

x < y becomes cmp rx,ry ⇒ CC1

cbr_LT CC1 → LT,LF

LT: loadI 1 ⇒ r2

br → LE

LF: loadI 0 ⇒ r2

LE: … other statements …

Comp 412, Fall 2010 6

Boolean & Relational Values

What if the ISA uses a condition code?

• Must use a conditional branch to interpret result of compare

• Necessitates branches in the evaluation

Example

This “positional representation” is much more complex

x < y becomes cmp rx,ry ⇒ CC1

cbr_LT CC1 → LT,LF

LT: loadI 1 ⇒ r2

br → LE

LF: loadI 0 ⇒ r2

LE: … other statements …
Condition codes
• are an architect’s hack
• allow ISA to avoid some

comparisons
• complicates code for

simple cases

Editorial comment: (KDC)
CC’s are an evil, seductive idea

Comp 412, Fall 2010 7

Boolean & Relational Values

The last example actually encoded result in the PC

If result is used to control an operation, that may suffice

Condition code version does not directly produce (x < y)

Boolean version does
Still, there is no significant difference in the code produced

Example

if (x < y)

then a  c + d

else a  e + f

Straight Condition Codes Boolean Comparisons

comp rx,ry  CC1 cmp_LT rx,ry  r1

cbr_LT CC1 → L1,L2 cbr → L1,L2

L1: add rc,rd  ra L1: add rc,rd  ra

br → LOUT br → LOUT

L2: add re,rf  ra L2: add re,rf  ra

br → LOUT br → LOUT

LOUT: nop LOUT: nop

Comp 412, Fall 2010 8

Boolean & Relational Values

Other Architectural Variations

Conditional move & predication both simplify this code

Both versions avoid the branches

Both are shorter than cond’n codes or Boolean-valued compare

Are they better?

Conditional Move Predicated Execution

comp rx,ry  CC1 cmp_LT rx,ry  r1

add rc,rd  r1 (r1) add rc,rd  ra

add re,rf  r2 (¬r1) add re,rf  ra

i2i_LT CC1,r1,r2  ra

Example

if (x < y)

then a  c + d

else a  e + f

Comp 412, Fall 2010 9

Boolean & Relational Values

Consider the assignment x  a < b  c < d

Here, Boolean compare produces much better code

Straight Condition Codes Boolean Compare

comp ra,rb  CC1 cmp_LT ra,rb  r1

cbr_LT CC1 → L1,L2 cmp_LT rc,rd  r2

L1: comp rc,rd  CC2 and r1,r2  rx

cbr_LT CC2 → L3,L2

L2: loadI 0  rx

br → LOUT

L3: loadI 1  rx

br → LOUT

LOUT: nop

Comp 412, Fall 2010 10

Boolean & Relational Values

Conditional move & predication help here, too

Conditional move is worse than Boolean compare
Predication is identical to Boolean compares

The bottom line:
 Context & hardware determine the appropriate choice

x  a < b  c < d

Conditional Move Predicated Execution

comp ra,rb  CC1 cmp_LT ra,rb  r1

i2i_LT CC1,rT,rF  r1 cmp_LT rc,rd  r2

comp rc,rd  CC2 and r1,r2  rx

i2i_LT CC2,rT,rF  r2

and r1,r2  rx

Chapter 7 goes into greater depth; read it.

Comp 412, Fall 2010 11

Control Flow

If-then-else

• Follow model for evaluating relationals & booleans with
branches

Branching versus predication (e.g., IA-64)

• Frequency of execution

— Uneven distribution  do what it takes to speed common case

• Amount of code in each case

— Unequal amounts means predication may waste issue slots

• Control flow inside the construct

— Any branching activity within the construct complicates the
predicates and makes branches attractive

Comp 412, Fall 2010 12

Short-circuit Evaluation

Optimize boolean expression evaluation

• Once value is determined, skip rest of the evaluation

if (x or y and z) then …

— If x is true, need not evaluate y or z

→ Branch directly to the “then” clause

— On a PDP-11 or a VAX, short circuiting saved time

• Modern architectures may favor evaluating full expression

— Rising branch latencies make the short-circuit path expensive

— Conditional move and predication may make full path cheaper

• Past: compilers analyzed code to insert short circuits

• Future: compilers analyze code to prove legality of full path
evaluation where language specifies short circuits

Comp 412, Fall 2010 13

Control Flow

Loops

• Evaluate condition before loop (if needed)

• Evaluate condition after loop

• Branch back to the top (if needed)

Merges test with last block of loop body

while, for, do, & until all fit this basic model

Pre-test

Loop body

Post-test

Next block

Comp 412, Fall 2010 14

Implementing Loops

for (i = 1; i< 100; i++) { loop body }

next statement

Pre-test

Post-test

Initialization

loadI 1  r1

loadI 1  r2

loadI 100  r3

cmp_GE r1,r3  r4

cbr r4 → L2,L1

L1: loop body

add r1,r2  r1

cmp_LT r1,r3  r5

cbr r5 → L1,L2

L2: next statement

Comp 412, Fall 2010 15

Break statements

Many modern programming languages include a break

• Exits from the innermost control-flow statement

— Out of the innermost loop

— Out of a case statement

Translates into a jump

• Targets statement outside control-
flow construct

• Creates multiple-exit construct

• Skip in loop goes to next iteration

Only make sense if loop has > 1 block

Pre-test

Loop head

Post-test

Next block

B 1 B 2Break
in B 1

Skip in
B 2

Comp 412, Fall 2010 16

Control Flow

Case Statements

1 Evaluate the controlling expression

2 Branch to the selected case

3 Execute the code for that case

4 Branch to the statement after the case

Parts 1, 3, & 4 are well understood, part 2 is the key

Comp 412, Fall 2010 17

Control Flow

Case Statements

1 Evaluate the controlling expression

2 Branch to the selected case

3 Execute the code for that case

4 Branch to the statement after the case (use break)

Parts 1, 3, & 4 are well understood, part 2 is the key

Strategies

• Linear search (nested if-then-else constructs)

• Build a table of case expressions & binary search it

• Directly compute an address (requires dense case set)

Case statements are a place where attention
to code shape pays off handsomely.

