
Lecture 16: x86-64 assembly language, code
generation

David Hovemeyer

October 26, 2020

601.428/628 Compilers and Interpreters

Today

I x86-64 assembly language
I x86-64 tips
I Code generation

x64-64 assembly language

x86-64 assembly language

I Your compiler (in Assignments 3–6) will generate x86-64 assembly
language

I x86-64 is the dominant instruction set architecture for general purpose
computing (laptops, servers, etc.)
I ARM is making inroads, though

I It’s a 64-bit architecture
I Registers are 64 bits wide
I Memory addresses are 64 bits

x86-64 registers

Register(s) Note
%rip Instruction pointer
%rax Function return value

%rdi, %rsi
%rbx, %rcx, %rdx

%rsp, %rbp Stack pointer, frame pointer
%r8, %r9, ..., %r15

All of these registers are 64 bits (8 bytes)

Aside from %rip and %rsp, all of these are general-purpose registers

“Sub”-registers

I For historical reasons (evolution of x86 architecture from 16 to 64 bits),
each data register is divided into
I Low byte
I Second lowest byte
I Lowest 2 bytes (16 bits)
I Lowest 4 bytes (32 bits)

I E.g., %rax register has %al, %ah, %ax, %eax:

ax
eax

alah

rax

08163263

Naming of sub-registers

Sub-register
Register 32 bit 16 bit Lowest 8 bit

%rax %eax %ax %al
%rbx %ebx %bx %bl
%rcx %ecx %cx %cl
%rdx %edx %dx %dl
%rdi %edi %di %dil
%rsi %esi %si %sil
%rsp %esp %sp %spl
%rbp %ebp %bp %bpl
%r81 %r8d %r8w %r8b

1Same pattern for %r9–%r15

Stack

I The %rsp register is the stack pointer
I Contains address of “top” of stack
I Stack grows down (from high to low addresses), so %rsp decreases as

stack grows

Assembly language syntax

I Each instruction has a mnemonic (mov, push, add, etc.)
I Most instructions will have one or two operands that specify data values

(input and/or output)
I At most one operand can be a memory reference

I On Linux, the standard tools use “AT&T” assembly syntax
I Source is first operand, destination is second

I For instructions that do computations, destination operand is also a
source value!
I I.e., they are destructive
I This makes code generation a bit interesting

Labels

I A label gives a name to the address of a location in memory (code or
data)
I Eventual runtime address generally not known ahead of time, linker

and/or dynamic linker will resolve prior to execution
I Used to refer to procedures
I Used to refer to intermediate locations within procedure (local labels)
I Used to refer to global data and constants

Operand size suffixes

I You will notice that instruction mnemonics sometimes use suffixes to
indicate the operand size:

Suffix Bytes Bits Note
b 1 8 “Byte”
w 2 16 “Word”
l 4 32 “Long” word
q 8 64 “Quad” word

(Use of w to mean 16 bits shows 16-bit origins of x86)
I E.g., movq means move a 64 bit value
I You can often omit the operand size suffix, but it’s helpful for readability,

and can even catch bugs

Assembly operands

Assume count and arr are global variables, R is a register, N is an
immediate, S is 1, 2, 4, or 8

Type Syntax Example Note
Memory ref Addr count Absolute memory address
Immediate $N $8, $arr $arr is address of arr
Register R %rax

Memory ref (R) (%rax) Address = %rax
Memory ref N(R) 8(%rax) Address = %rax+8
Memory ref (R,R) (%rax,%rsi) Address = %rax+%rsi
Memory ref N(R,R) 8(%rax,%rsi) Address = %rax+%rsi+8
Memory ref (,R,S) (,%rsi,4) Address = %rsi×4
Memory ref (R,R,S) (%rax,%rsi,4) Address = %rax+(%rsi×4)
Memory ref N(,R,S) 8(,%rsi,4) Address = (%rsi×4)+8
Memory ref N(R,R,S) 8(%rax,%rsi,4) Address = %rax+(%rsi×4)+8

Data movement

90% of assembly code is data movement (made-up statistic)

I mov: copy source operand to destination operand
I Register
I Memory location (only one operand can be memory location)
I Immediate value (source operand only)

I Stack manipulation: push and pop instructions
I Generally used for saving and restoring register values
I push: decrement %rsp by operand size, copy operand to (%rsp)
I pop: copy (%rsp) to operand, increment %rsp by operand size

Data movement examples

Instruction Note
movq $42, %rax Store the constant value 42 in %rax
movq %rax, %rdi Copy 8 byte value from %rax to %rdi
movl %eax, 4(%rdx) Move 4 byte value from %eax to memory at address %rdx+4
pushq %rbp Decrement %rsp by 8,

store contents of %rbp in memory location %rsp
popq %rbp Load contents of memory location %rsp into %rbp,

increment %rsp by 8

ALU operations

I ALU = “Arithmetic Logic Unit”
I An ALU is a hardware component within the CPU that does computations

(of various kinds) on data values
I Addition/subtraction
I Logical operations (shifts, bitwise and/or/negation), etc.

I So, ALU instructions are the ones that do computations on values
I Typically, ALU operates only on integer values
I CPU will typically have floating-point unit(s) for operations on FP

values

lea instruction

I lea stands for “Load Effective Address”
I Instructions that allow a memory reference as an operand generally do an

address computation
I E.g., movl 12(%rdx,%rsi,4), %eax
I Computed address (for source memory location) is

%rdx+(%rsi×4)+12
I The lea instruction computes a memory address, but does not access a

memory location
I E.g., leaq 12(%rdx,%rsi,4), %rdi
I Quite similar to the address-of (&) operator in C and C++

Addition, subtraction

I add and sub instructions add and subtract integer values
I Two operands, second operand modified to store the result
I Note that either operand (but not both) could be a memory reference

I E.g.,
movq $1, %r9
movq $2, %r10
addq %r9, %r10
/* %r10 now contains the value 3 */

I Overflow is possible!
I Can detect using condition codes

Other ALU operations

There are lots of other ALU instructions!
I inc, dec (increment and decrement)
I Multiplication and division
I Logical/bitwise operations

Consult your favorite x86-64 reference for details

Control flow, condition codes

I Intra-procedural control flow: unconditional jump, conditional jump
I Target is the address of an instruction (in the same procedure)
I Usually specified by a label

I Conditional jump check a condition code
I E.g., “jump if equal”, “jump if less than”, etc.

I Most ALU instructions set condition codes
I Most useful one is the cmp instruction

Comparing values

I cmp instruction: essentially the same as sub, except that it doesn’t
modify the “result” operand
I Useful for comparing integer values

I Annoying quirk: AT&T syntax puts the operands in the opposite of the
order you might expect
I E.g., cmpl %eax, %ebx computes %ebx - %eax and sets condition

codes appropriately

Conditional jump

Most often, we want to use the result of a comparison in order to influence a
conditional jump instruction (used for implementing if/else logic and
eventually-terminating loops)
Examples (^ means XOR, ~ means NOT, & means AND, | means OR):

Instruction Condition for jump Meaning
je, jz ZF jump if equal
jl SF ^ OF jump if less
jle (SF ^ OF) | ZF jump if less than or equal
jg ~(SF ^ OF) & ~ZF jump if greater
jge ~(SF ^ OF) jump if greater than or equal
ja ~CF & ~ZF jump if above (unsigned)
jae ~CF jump if above or equal (unsigned)
jb CF jump if below (unsigned)
jbe CF | ZF jump if below or equal (unsigned)

call and ret

I call instruction: calls procedure
I %rip contains address of instruction following call instruction
I Push %rip onto stack (as though pushq %rip was executed): this is

the return address
I Change %rip to address of first instruction of called procedure
I Called procedure starts executing

I ret instruction: return from procedure
I Pop saved return address from stack into %rip (as though popq %rip

was executed)
I Execution continues at return address

Stack alignment

I The Linux x86-64 calling conventions require %rsp to be a multiple of 16
at the point of a procedure call (to ensure that 16 byte values can be
accessed on the stack if necessary)

I Issue: on entry to a procedure, %rsp mod 16 = 8 because the call
instruction (which called the procedure) pushed %rip (the program
counter) onto the stack

Ensuring correct stack alignment

I To ensure correct stack alignment:
I On procedure entry: subq $8, %rsp
I Prior to procedure return: addq $8, %rsp

I The Linux printf function will segfault if the stack is misaligned

Register use conventions

I Very important issue:
I There is only one set of registers
I Procedures must share them
I Register use conventions are rules that all procedures use to avoid

conflicts
I Another important issue:
I How are argument values passed to called procedures?
I Calling conventions typically designate that some argument values are

passed in specific registers
I Procedure return value is typically returned in a specific register

x86-64 Linux register use conventions

I Arguments 1–6 passed in %rdi, %rsi, %rdx, %rcx, %r8, %r9
I Argument 7 and beyond, and “large” arguments such as pass-by-value

struct data, passed on stack
I Integer or pointer return value returned in %rax
I Caller-saved registers: %r10, %r11 (and also the argument registers)
I Callee-saved registers: %rbx, %rbp, %r12, %r13, %14, %r15

Caller-saved vs. callee-saved

I What happens to register contents when a procedure is called?
I Callee-saved registers: caller may assume that the procedure call will

preserve their value
I In general, all procedures must save their values to memory before

modifying them, and restore them before returning
I Caller-saved registers: caller must not assume that the procedure call will

preserve their value
I In general any procedure can freely modify them
I A caller might need to save their contents to memory prior to calling a

procedure and restore the value afterwards

Using registers

I Using registers correctly and effectively is one of the main challenges of
assembly language programming

I Some advice:
I Use caller-saved registers (%r10, %r11, etc.) for very short-term

temporary values or computations
I You can use the argument registers as (caller-saved) temporary registers
I Understand that called procedures could modify them!

I Use callee-saved registers for longer term values that need to persist
across procedure calls
I Use pushq/popq to save and restore their values on procedure entry

and exit

x86-64 tips

Know where to put things

I The .section directive specifies which “section” of the executable
program assembled code or data will be placed in

I Put things in the right place!
I Code goes in .text
I Read-only data such as string constants go in .rodata
I Uninitialized (zero-filled) variables and buffers go in .bss
I Use the .space directive to indicate how large these are

I Initialized (non-zero-filled) variables and buffers go in .data
I There are various directives such as .byte, .2byte, .4byte, etc. to

specify initialized data values

Labels

I Labels are names representing addresses of code or data in memory
I For functions and global variables, use appropriate names
I Functions and data exported to other modules must be marked with

.globl
I For control-flow targets within a function, use local labels
I These are labels which start with .L (dot, followed by upper case L)
I The assembler will not add these to the module’s symbol table
I Using “normal” labels for control flow makes debugging difficult

because gdb thinks they are functions!

Using gdb

I You can debug assembly programs using gdb!
I “Debugging by adding print statements” is less practical for assembly

programs than programs in a high level language
I Which isn’t to say it’s not possible or (occasionally) useful

I Being able to use gdb confidently will greatly enhance your ability to
develop working assembly language programs

gdb tips

I Set breakpoints (break main, break myProg.S:123)
I where: see current call stack
I disassemble (or just disas): display assembly code of current function

(not necessary if code has debug symbols)
I step: step to next instruction
I next: step to next instruction (stepping over call instructions)
I Use $ prefix to refer to registers (e.g., $rax, $edi, etc.)
I Use print and casts to C data types when inspecting data:
I Print 64 bit value %rsp points to: print *(unsigned long *)$rsp
I Print character string %rdi points to: print (char *)$rdi
I Print fourth element of array of int elements that %r12 points to:

print ((int *)$r12)[3]

Code generation

Initial code generation

I Important milestone in compiler development: generate working code
I Goal is to generate working code, not necessarily efficient code
I Later optimization passes improve code quality
I Approach: use control-flow graph as IR
I Nodes are basic blocks
I Each basic block is sequence of instructions
I Jump instructions must be last

I Could generate “high-level” (machine-independent) instructions
I Or, could generate instructions equivalent to target assembly language

Example program

PROGRAM SumToN;
VAR i, sum, n: INTEGER;

BEGIN
-- read integer from user
READ n;
-- compute sum from 1 to the integer
i := 1;
sum := 0;
WHILE i <= n DO

sum := sum + i;
i := i + 1;

END;
-- output the sum
WRITE sum;

END.

Example program AST

add_0
[]

var_ref_6
[sum]

var_ref_7
[i]

add_1
[]

int_literal_2
[1]

var_ref_9
[i]

assign_0
[]

int_literal_0
[1]

var_ref_1
[i]

assign_1
[]

int_literal_1
[0]

var_ref_2
[sum]

assign_2
[]

var_ref_5
[sum]

assign_3
[]

var_ref_8
[i]

compare_lte_0
[]

var_ref_3
[i]

var_ref_4
[n]

declarations_0
[]

var_declarations_0
[]

identifier_0
[i]

identifier_1
[sum]

identifier_2
[n]

identifier_3
[INTEGER]

identifier_list_0
[]

instructions_0
[]

read_0
[]

while_0
[]

write_0
[]

instructions_1
[]

named_type_0
[]

program_0
[]

var_ref_0
[n]

var_def_0
[]

var_ref_10
[sum]

Code generation strategy

I Build symbol tables, determine storage requirements (size and offset) for
variables

I Code generator is an AST visitor
I Code generation is essentially a bottom-up process

I Assume registers can be allocated as needed
I Value computed by each expression is held in a register
I References to variables (for both accessing value and assignment) become

memory references

Let’s do it!

In class: interactive example, results will be posted to Piazza

	x64-64 assembly language
	x86-64 tips
	Code generation

