
Intermediate Representations

Comp 412

Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved.

Students enrolled in Comp 412 at Rice University have explicit permission to make copies 
of these materials for their personal use.  

Faculty from other educational institutions may use these materials for nonprofit 
educational purposes, provided this copyright notice is preserved.

COMP 412

FALL 2010

Most of the material in 
this lecture comes 
from Chapter 5 of EaC



Obvious answer: at the start of Chapter 5 in EaC

More important answer

• We are on the cusp of the art, science, & engineering of 
compilation

• Scanning & parsing are applications of automata theory

• Context-sensitive analysis, as covered in class, is mostly 
software engineering

• The mid-section of the course will focus on issues where the 
compiler writer needs to choose among alternatives

— The choices matter; they affect the quality of compiled code

— There may be no “best answer” or “best practice”

To my mind, the fun begins at this point

Comp 412, Fall 2010 2

Where In The Course Are We?



Comp 412, Fall 2010 3

Intermediate Representations

• Front end - produces an intermediate representation (IR)

• Middle end - transforms the IR into an equivalent IR that 
runs more efficiently

• Back end - transforms the IR into native code

• IR encodes the compiler’s knowledge of the program

• Middle end usually consists of several passes

Front

End

Middle

End

Back

End

IR IRSource

Code
Target

Code



Comp 412, Fall 2010 4

Intermediate Representations

• Decisions in IR design affect the speed and efficiency 
of the compiler

• Some important IR properties
— Ease of generation

— Ease of manipulation

— Procedure size

— Freedom of expression

— Level of abstraction

• The importance of different properties varies between 
compilers
— Selecting an appropriate IR for a compiler is critical



Comp 412, Fall 2010 5

Types of Intermediate Representations

Three major categories

• Structural
— Graphically oriented

— Heavily used in source-to-source translators

— Tend to be large

• Linear
— Pseudo-code for an abstract machine

— Level of abstraction varies

— Simple, compact data structures

— Easier to rearrange

• Hybrid
— Combination of graphs and linear code

— Example: control-flow graph

Examples:
Trees, DAGs 

Examples:
3 address code
Stack machine code 

Example:
Control-flow graph 



Comp 412, Fall 2010 6

Level of Abstraction

• The level of detail exposed in an IR influences the 
profitability and feasibility of different optimizations.

• Two different representations of an array reference:

subscript

A i j

loadI 1 => r1
sub   rj, r1 => r2
loadI 10 => r3
mult  r2, r3 => r4
sub   ri, r1 => r5
add   r4, r5 => r6
loadI @A => r7
add   r7, r6 => r8
load  r8 => rAij

High level AST:
Good for memory 
disambiguation

Low level linear code:
Good for address calculation



Comp 412, Fall 2010 7

Level of Abstraction

• Structural IRs are usually considered high-level
• Linear IRs are usually considered low-level
• Not necessarily true:

+

*

10

j 1

- j 1

-

+

@A

load

Low level AST
loadArray A,i,j

High level linear code

In Chapter 11 of EaC, we will see trees that have a 
lower level of abstraction than the machine code!



Comp 412, Fall 2010 8

Abstract Syntax Tree

An abstract syntax tree is the procedure’s parse tree with 
the nodes for most non-terminal nodes removed

x - 2 * y

• Can use linearized form of the tree
— Easier to manipulate than pointers

x 2 y * - in postfix form

- * 2 y x in prefix form

• S-expressions (Scheme,Lisp) are (essentially) ASTs

-

x

2 y

*



Comp 412, Fall 2010 9

Directed Acyclic Graph

A directed acyclic graph (DAG) is an AST with a unique 
node for each value

• Makes sharing explicit

• Encodes redundancy

x

2 y

*

-



z /



w

z  x - 2 * y
w  x  /  2

With two copies of the same 
expression, the compiler might be 
able to arrange the code to 
evaluate it only once.



Comp 412, Fall 2010 10

Stack Machine Code

Originally used for stack-based computers, now Java

• Example:

x - 2 * y becomes

Advantages

• Compact form

• Introduced names are implicit, not explicit

• Simple to generate and execute code

Useful where code is transmitted
over slow communication links  (the net )

push x

push 2

push y

multiply

subtract

Implicit names take up 
no space, where explicit 
ones do!



Comp 412, Fall 2010 11

Three Address Code

Several different representations of three address code

• In general, three address code has statements of the form:

x  y op z

With 1 operator (op ) and, at most, 3 names (x, y, & z)

Example:

z  x - 2 * y becomes

Advantages:

• Resembles many real machines

• Introduces a new set of names

• Compact form

t  2 * y

z  x - t

*



Comp 412, Fall 2010 12

Three Address Code: Quadruples

Naïve representation of three address code
• Table of k * 4 small integers
• Simple record structure
• Easy to reorder
• Explicit names

load 1 y

loadi 2 2

mult 3 2 1

load 4 x

sub 5 4 3

load  r1, y

loadI r2, 2

mult  r3, r2, r1

load  r4, x

sub   r5, r4, r3

RISC assembly code Quadruples

The original FORTRAN

compiler used “quads”



Comp 412, Fall 2010 13

Three Address Code: Triples

• Index used as implicit name

• 25% less space consumed than quads

• Much harder to reorder

Remember, for a long time, 640Kb was a lot of RAM

(1) load y

(2) loadI 2

(3) mult (1) (2)

(4) load x

(5) sub (4) (3)

Implicit names occupy no space



Comp 412, Fall 2010 14

Three Address Code: Indirect Triples

• List first triple in each statement

• Implicit name space

• Uses more space than triples, but easier to reorder

• Major tradeoff between quads and triples is compactness 
versus ease of manipulation
— In the past compile-time space was critical

— Today, speed may be more important

Stmt
List

Implicit 
Names

Indirect Triples

(100) (100) load y

(105) (101) loadI 2

(102) mult (100) (101)

(103) load x

(104) sub (103) (102)



Comp 412, Fall 2010 15

Two Address Code

• Allows statements of the form
x  x op y

Has 1 operator (op ) and, at most, 2 names (x and y)

Example:

z  x - 2 * y becomes

• Can be very compact

Problems

• Machines no longer rely on destructive operations

• Difficult name space
— Destructive operations make reuse hard

— Good model for machines with destructive ops (PDP-11)

t1 ← 2

t2 ← load y

t2 ← t2 * t1
z ← load x

z ← z - t2



Comp 412, Fall 2010 16

Control-flow Graph

Models the transfer of control in the procedure

• Nodes in the graph are basic blocks
— Can be represented with quads or any other linear 

representation

• Edges in the graph represent control flow

Example

if  (x = y)

a ← 2

b ← 5

a ← 3

b ← 4

c ← a * b

Basic blocks —
Maximal length 
sequences of 
straight-line code



Comp 412, Fall 2010 17

Static Single Assignment Form

• The main idea:  each name defined exactly once

• Introduce ϕ-functions to make it work

Strengths of SSA-form

• Sharper analysis

• ϕ-functions give hints about placement

• (sometimes) faster algorithms

Original

x ← …

y ← …

while (x < k)

x ← x + 1

y ← y + x

SSA-form

x0  …

y0  …

if (x0 >= k) goto next

loop: x1  (x0,x2)  

y1  (y0,y2)

x2  x1 + 1 

y2  y1 + x2
if (x2 < k) goto loop

next:     …            



Comp 412, Fall 2010 18

Using Multiple Representations

• Repeatedly lower the level of the intermediate 
representation
— Each intermediate representation is suited towards certain 

optimizations

• Example: the Open64 compiler
— WHIRL intermediate format

→ Consists of 5 different IRs that are progressively more detailed 
and less abstract

Front

End

Middle

End

Back

End

IR 1 IR 3Source

Code

Target

Code

Middle

End

IR 2



Comp 412, Fall 2010 19

Memory Models

Two major models

• Register-to-register model
— Keep all values that can legally be stored in a register in registers

— Ignore machine limitations on number of registers

— Compiler back-end must insert loads and stores

• Memory-to-memory model
— Keep all values in memory

— Only promote values to registers directly before they are used

— Compiler back-end can remove loads and stores

• Compilers for RISC machines usually use register-to-register
— Reflects programming model

— Easier to determine when registers are used



Comp 412, Fall 2010 20

The Rest of the Story…

Representing the code is only part of an IR

There are other necessary components

• Symbol table

• Constant table
— Representation, type

— Storage class, offset

• Storage map
— Overall storage layout

— Overlap information

— Virtual register assignments



Comp 412, Fall 2010 21

Symbol Tables

Classic approach to building a symbol table uses hashing

• Personal preference: a two-table scheme
— Sparse index to reduce chance of collisions

— Dense table to hold actual data
→ Easy to expand, to traverse, to read & write from/to files

• Use chains in index to handle
collisions

h(“foe”)

Collision occurs when 
h() returns a slot in 
the sparse index that 
is already full.

h(“fee”)

fie  | char *  | array | …

fee | integer | scalar | …

fum | float    | scalar | …

NextSlot

Stack-like 
growth

Sparse index Dense table

See §B.3 in EaC for 
a longer explanation



Comp 412, Fall 2010 22

Hash-less Symbol Tables

Classic approach to building a symbol table uses hashing

• Some concern about worst-case behavior
— Collisions in the hash function can lead to linear search

— Some authors advocate “perfect” hash for keyword lookup

• Automata theory lets us avoid worst-case behavior

h(“foe”)

Collision occurs when 
h() returns a slot in 
the sparse index that 
is already full.

h(“fee”)

My favorite 
hash table 
organization

fie  | char *  | array | …

fee | integer | scalar | …

fum | float    | scalar | …

NextSlot

Stack-like 
growth

Sparse index Dense table



Comp 412, Fall 2010 23

Hash-less Symbol Tables

One alternative is Paige & Cai’s multiset discrimination

• Order the name space offline

• Assign indices to each name

• Replace the names in the input with their encoded indices

Using DFA techniques, we can build a guaranteed linear-time 
replacement for the hash function h

• DFA that results from a list of words is acyclic
— RE looks like  r1 | r2 | r3 | … | rk

— Could process input twice, once to build DFA, once to use it

• We can do even better

Digression on page 241 of EaC



Comp 412, Fall 2010 24

Hash-less Symbol Tables

Classic approach to building a symbol table uses hashing

• Some concern about worst-case behavior
— Collisions in the hash function can lead to linear search

— Some authors advocate “perfect” hash for keyword lookup

• Automata theory lets us avoid worst-case behavior

Replace the hash 
function, h, and 
the sparse index 
with an efficient 
direct map, d, …

d(“foe”)

d(“fum”)

fie  | char *  | array | …

fee | integer | scalar | …

fum | float    | scalar | …

NextSlot

Stack-like 
growth

Sparse index Dense table

d(“fee”)

d(“fie”)



Comp 412, Fall 2010 25

Hash-less Symbol Tables

Incremental construction of an acyclic DFA

• To add a word, run it through the DFA
— At some point, it will face a transition to the error state

— At that point, start building states & transitions to recognize it

• Requires a memory access per character in the key
— If DFA grows too large, memory access costs become excessive

— For small key sets (e.g., names in a procedure), not a problem

• Optimizations
— Last state on each path can be explicit

→ Substantial reduction in memory costs

→ Instantiate when path is lengthened

— Trade off granularity against size of state representation

— Encode capitalization separately 
→ Bit strings tied to final state?


