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Most of the material in 
this lecture comes 
from Chapter 5 of EaC



Obvious answer: at the start of Chapter 5 in EaC

More important answer

• We are on the cusp of the art, science, & engineering of 
compilation

• Scanning & parsing are applications of automata theory

• Context-sensitive analysis, as covered in class, is mostly 
software engineering

• The mid-section of the course will focus on issues where the 
compiler writer needs to choose among alternatives

— The choices matter; they affect the quality of compiled code

— There may be no “best answer” or “best practice”

To my mind, the fun begins at this point
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Where In The Course Are We?
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Intermediate Representations

• Front end - produces an intermediate representation (IR)

• Middle end - transforms the IR into an equivalent IR that 
runs more efficiently

• Back end - transforms the IR into native code

• IR encodes the compiler’s knowledge of the program

• Middle end usually consists of several passes
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Target

Code
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Intermediate Representations

• Decisions in IR design affect the speed and efficiency 
of the compiler

• Some important IR properties
— Ease of generation

— Ease of manipulation

— Procedure size

— Freedom of expression

— Level of abstraction

• The importance of different properties varies between 
compilers
— Selecting an appropriate IR for a compiler is critical
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Types of Intermediate Representations

Three major categories

• Structural
— Graphically oriented

— Heavily used in source-to-source translators

— Tend to be large

• Linear
— Pseudo-code for an abstract machine

— Level of abstraction varies

— Simple, compact data structures

— Easier to rearrange

• Hybrid
— Combination of graphs and linear code

— Example: control-flow graph

Examples:
Trees, DAGs 

Examples:
3 address code
Stack machine code 

Example:
Control-flow graph 
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Level of Abstraction

• The level of detail exposed in an IR influences the 
profitability and feasibility of different optimizations.

• Two different representations of an array reference:

subscript

A i j

loadI 1 => r1
sub   rj, r1 => r2
loadI 10 => r3
mult  r2, r3 => r4
sub   ri, r1 => r5
add   r4, r5 => r6
loadI @A => r7
add   r7, r6 => r8
load  r8 => rAij

High level AST:
Good for memory 
disambiguation

Low level linear code:
Good for address calculation
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Level of Abstraction

• Structural IRs are usually considered high-level
• Linear IRs are usually considered low-level
• Not necessarily true:

+

*

10

j 1

- j 1

-

+

@A

load

Low level AST
loadArray A,i,j

High level linear code

In Chapter 11 of EaC, we will see trees that have a 
lower level of abstraction than the machine code!
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Abstract Syntax Tree

An abstract syntax tree is the procedure’s parse tree with 
the nodes for most non-terminal nodes removed

x - 2 * y

• Can use linearized form of the tree
— Easier to manipulate than pointers

x 2 y * - in postfix form

- * 2 y x in prefix form

• S-expressions (Scheme,Lisp) are (essentially) ASTs

-

x

2 y

*
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Directed Acyclic Graph

A directed acyclic graph (DAG) is an AST with a unique 
node for each value

• Makes sharing explicit

• Encodes redundancy

x

2 y

*

-



z /



w

z  x - 2 * y
w  x  /  2

With two copies of the same 
expression, the compiler might be 
able to arrange the code to 
evaluate it only once.
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Stack Machine Code

Originally used for stack-based computers, now Java

• Example:

x - 2 * y becomes

Advantages

• Compact form

• Introduced names are implicit, not explicit

• Simple to generate and execute code

Useful where code is transmitted
over slow communication links  (the net )

push x

push 2

push y

multiply

subtract

Implicit names take up 
no space, where explicit 
ones do!
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Three Address Code

Several different representations of three address code

• In general, three address code has statements of the form:

x  y op z

With 1 operator (op ) and, at most, 3 names (x, y, & z)

Example:

z  x - 2 * y becomes

Advantages:

• Resembles many real machines

• Introduces a new set of names

• Compact form

t  2 * y

z  x - t

*
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Three Address Code: Quadruples

Naïve representation of three address code
• Table of k * 4 small integers
• Simple record structure
• Easy to reorder
• Explicit names

load 1 y

loadi 2 2

mult 3 2 1

load 4 x

sub 5 4 3

load  r1, y

loadI r2, 2

mult  r3, r2, r1

load  r4, x

sub   r5, r4, r3

RISC assembly code Quadruples

The original FORTRAN

compiler used “quads”
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Three Address Code: Triples

• Index used as implicit name

• 25% less space consumed than quads

• Much harder to reorder

Remember, for a long time, 640Kb was a lot of RAM

(1) load y

(2) loadI 2

(3) mult (1) (2)

(4) load x

(5) sub (4) (3)

Implicit names occupy no space
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Three Address Code: Indirect Triples

• List first triple in each statement

• Implicit name space

• Uses more space than triples, but easier to reorder

• Major tradeoff between quads and triples is compactness 
versus ease of manipulation
— In the past compile-time space was critical

— Today, speed may be more important

Stmt
List

Implicit 
Names

Indirect Triples

(100) (100) load y

(105) (101) loadI 2

(102) mult (100) (101)

(103) load x

(104) sub (103) (102)
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Two Address Code

• Allows statements of the form
x  x op y

Has 1 operator (op ) and, at most, 2 names (x and y)

Example:

z  x - 2 * y becomes

• Can be very compact

Problems

• Machines no longer rely on destructive operations

• Difficult name space
— Destructive operations make reuse hard

— Good model for machines with destructive ops (PDP-11)

t1 ← 2

t2 ← load y

t2 ← t2 * t1
z ← load x

z ← z - t2
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Control-flow Graph

Models the transfer of control in the procedure

• Nodes in the graph are basic blocks
— Can be represented with quads or any other linear 

representation

• Edges in the graph represent control flow

Example

if  (x = y)

a ← 2

b ← 5

a ← 3

b ← 4

c ← a * b

Basic blocks —
Maximal length 
sequences of 
straight-line code
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Static Single Assignment Form

• The main idea:  each name defined exactly once

• Introduce ϕ-functions to make it work

Strengths of SSA-form

• Sharper analysis

• ϕ-functions give hints about placement

• (sometimes) faster algorithms

Original

x ← …

y ← …

while (x < k)

x ← x + 1

y ← y + x

SSA-form

x0  …

y0  …

if (x0 >= k) goto next

loop: x1  (x0,x2)  

y1  (y0,y2)

x2  x1 + 1 

y2  y1 + x2
if (x2 < k) goto loop

next:     …            
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Using Multiple Representations

• Repeatedly lower the level of the intermediate 
representation
— Each intermediate representation is suited towards certain 

optimizations

• Example: the Open64 compiler
— WHIRL intermediate format

→ Consists of 5 different IRs that are progressively more detailed 
and less abstract

Front

End

Middle

End

Back

End

IR 1 IR 3Source

Code

Target

Code

Middle

End

IR 2
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Memory Models

Two major models

• Register-to-register model
— Keep all values that can legally be stored in a register in registers

— Ignore machine limitations on number of registers

— Compiler back-end must insert loads and stores

• Memory-to-memory model
— Keep all values in memory

— Only promote values to registers directly before they are used

— Compiler back-end can remove loads and stores

• Compilers for RISC machines usually use register-to-register
— Reflects programming model

— Easier to determine when registers are used
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The Rest of the Story…

Representing the code is only part of an IR

There are other necessary components

• Symbol table

• Constant table
— Representation, type

— Storage class, offset

• Storage map
— Overall storage layout

— Overlap information

— Virtual register assignments
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Symbol Tables

Classic approach to building a symbol table uses hashing

• Personal preference: a two-table scheme
— Sparse index to reduce chance of collisions

— Dense table to hold actual data
→ Easy to expand, to traverse, to read & write from/to files

• Use chains in index to handle
collisions

h(“foe”)

Collision occurs when 
h() returns a slot in 
the sparse index that 
is already full.

h(“fee”)

fie  | char *  | array | …

fee | integer | scalar | …

fum | float    | scalar | …

NextSlot

Stack-like 
growth

Sparse index Dense table

See §B.3 in EaC for 
a longer explanation
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Hash-less Symbol Tables

Classic approach to building a symbol table uses hashing

• Some concern about worst-case behavior
— Collisions in the hash function can lead to linear search

— Some authors advocate “perfect” hash for keyword lookup

• Automata theory lets us avoid worst-case behavior

h(“foe”)

Collision occurs when 
h() returns a slot in 
the sparse index that 
is already full.

h(“fee”)

My favorite 
hash table 
organization

fie  | char *  | array | …

fee | integer | scalar | …

fum | float    | scalar | …

NextSlot

Stack-like 
growth

Sparse index Dense table
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Hash-less Symbol Tables

One alternative is Paige & Cai’s multiset discrimination

• Order the name space offline

• Assign indices to each name

• Replace the names in the input with their encoded indices

Using DFA techniques, we can build a guaranteed linear-time 
replacement for the hash function h

• DFA that results from a list of words is acyclic
— RE looks like  r1 | r2 | r3 | … | rk

— Could process input twice, once to build DFA, once to use it

• We can do even better

Digression on page 241 of EaC
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Hash-less Symbol Tables

Classic approach to building a symbol table uses hashing

• Some concern about worst-case behavior
— Collisions in the hash function can lead to linear search

— Some authors advocate “perfect” hash for keyword lookup

• Automata theory lets us avoid worst-case behavior

Replace the hash 
function, h, and 
the sparse index 
with an efficient 
direct map, d, …

d(“foe”)

d(“fum”)

fie  | char *  | array | …

fee | integer | scalar | …

fum | float    | scalar | …

NextSlot

Stack-like 
growth

Sparse index Dense table

d(“fee”)

d(“fie”)
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Hash-less Symbol Tables

Incremental construction of an acyclic DFA

• To add a word, run it through the DFA
— At some point, it will face a transition to the error state

— At that point, start building states & transitions to recognize it

• Requires a memory access per character in the key
— If DFA grows too large, memory access costs become excessive

— For small key sets (e.g., names in a procedure), not a problem

• Optimizations
— Last state on each path can be explicit

→ Substantial reduction in memory costs

→ Instantiate when path is lengthened

— Trade off granularity against size of state representation

— Encode capitalization separately 
→ Bit strings tied to final state?


